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Tutorial Goals

• Learn about:
– Recent and notable research and researchers in mining 

SE data
– Data mining and data processing techniques and how to 

apply them to SE data
– Risks in using SE data due to e.g., noise, project culture

• By end of tutorial, you should be able:
– Retrieve SE data 
– Prepare SE data for mining
– Mine interesting information from SE data
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Mining SE Data

• MAIN GOAL
– Transform static record-

keeping SE data to active
data

– Make SE data actionable 
by uncovering hidden 
patterns and trends

MailingsBugzilla

Code 
repository

Execution
tracesCVS
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Mining SE Data

• SE data can be used to:
– Gain empirically-based understanding of 

software development
– Predict, plan, and understand various aspects 

of a project
– Support future development and project 

management activities
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Overview of Mining SE Data

code 
bases

change
history

program
states

structural
entities

software engineering data

bug
reports

programming defect detection testing debugging maintenance

software engineering tasks helped by data mining

classification association/
patterns clustering

data mining techniques

…

…

…
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Tutorial Outline

• Part I: What can you learn from SE data?
– A sample of notable recent findings for different 

SE data types

• Part II: How can you mine SE data?
– Overview of data mining techniques 
– Overview of SE data processing tools and 

techniques
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Types of SE Data

• Historical data
– Version or source control: cvs, subversion, perforce 
– Bug systems: bugzilla, GNATS, JIRA
– Mailing lists: mbox

• Multi-run and multi-site data
– Execution traces
– Deployment logs

• Source code data
– Source code repositories: sourceforge.net
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Historical Data

“History is a guide to navigation in 
perilous times. History is who we are 
and why we are the way we are.” 

- David C. McCullough
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Historical Data

• Track the evolution of a software project: 
– source control systems store changes to the code 
– defect tracking systems follow the resolution of defects
– archived project communications record rationale for 

decisions throughout the life of a project
• Used primarily for record-keeping activities: 

– checking the status of a bug
– retrieving old code
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Percentage of Project Costs 
Devoted to Maintenance
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Survey of Software Maintenance 
Activities

• Perfective: add new functionality
• Corrective: fix faults
• Adaptive: new file formats, refactoring 

17.4
60.3

18.2

56.739.0

2.2

Lientz, Swanson, Tomhkins [1978]
Nosek, Palvia [1990]

MIS Survey

Schach, Jin, Yu, Heller, Offutt [2003]
Mining ChangeLogs
(Linux, GCC, RTP)



Source Control Repositories
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Source Control Repositories

• A source control system 
tracks changes to 
ChangeUnits

• Example of ChangeUnits:
– File (most common)
– Function
– Dependency (e.g., Call)

• Each ChangeUnit:
– It tracks the developer, 

time, change message, co-
changing Units

ChangeListDeveloper

Time

ChangeChangeUnit

Modify

Add

Remove

Change
Type

* .. *

ChangeList
Message

FI

FR

GM

ChangeList
Type
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Change Propagation

Determine
Initial Entity 
To Change

Change
Entity

Determine
Other Entities

To Change

Consult
Guru for 
Advice

New Req.,  Bug Fix “How does a change in one source code 
entity propagate to other entities?”

No More
Changes

For Each Entity

Suggested Entity
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Measuring Change Propagation

• We want:
– High Precision to avoid wasting time
– High Recall to avoid bugs

entities changed
changed  whichentities predictedRecall =

entities predicted
changed  whichentities predictedPrecision =
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Guiding Change Propagation

• Mine association rules from change history
• Use rules to help propagate changes:

– Recall as high as 44%
– Precision around 30%

• High precision and recall reached in < 1mth
• Prediction accuracy improves prior to a 

release (i.e., during maintenance phase)

[Zimmermann et al. 05]
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Code Sticky Notes

• Traditional dependency graphs and program 
understanding models usually do not use 
historical information

• Static dependencies capture only a static 
view of a system – not enough detail!

• Development history can help understand 
the current structure (architecture) of a 
software system

[Hassan & Holt 04]
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Conceptual & Concrete Architecture
(NetBSD)

Hardware
Trans.

Kernel Fault
Handler

Pager

FileSystemVirtual Addr.
Maint. VM Policy

Subsystem

Depend DivergenceHardware
Trans.

Kernel Fault
Handler

Pager

FileSystemVirtual Addr.
Maint. VM Policy

Convergence

Subsystem

Why? Who?
When? Where?

Concrete (reality)Conceptual (proposed)
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Investigating Unexpected Dependencies 
Using Historical Code Changes

• Eight unexpected dependencies
• All except two dependencies existed since day one:

– Virtual Address Maintenance Pager

– Pager Hardware Translations

Which? vm_map_entry_create (in src/sys/vm/Attic/vm_map.c) 
depends on  pager_map (in /src/sys/uvm/uvm_pager.c) 

Who? cgd 

When? 1993/04/09 15:54:59 
Revision 1.2 of src/sys/vm/Attic/vm_map.c 

Why? 

from sean eric fagan:  
it seems to keep the vm system from deadlocking the 
system when it runs out of swap + physical memory. 
prevents the system from giving the last page(s) to 
anything but the referenced "processes" (especially 
important is the pager process, which should never 
have to wait for a free page). 
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Studying Conway’s Law

• Conway’s Law:
“The structure of a software system is a direct 

reflection of the structure of the development 
team”

[Bowman et al. 99]
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Linux: Conceptual, Ownership, 
Concrete

Conceptual 
Architecture

Ownership
Architecture

Concrete
Architecture



Source Control and Bug Repositories
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Predicting Bugs
• Studies have shown that most complexity metrics 

correlate well with LOC!
– Graves et al. 2000 on commercial systems
– Herraiz et al. 2007 on open source systems

• Noteworthy findings:
– Previous bugs are good predictor of future bugs
– The more a file changes, the more likely it will have 

bugs in it
– Recent changes affect more the bug potential of a file 

over older changes (weighted time damp models)
– Number of developers is of little help in predicting bugs
– Hard to generalize bug predictors across projects 

unless in similar domains [Nagappan, Ball et al. 2006]
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Using Imports in Eclipse to Predict 
Bugs

import org.eclipse.jdt.internal.compiler.lookup.*;
import org.eclipse.jdt.internal.compiler.*;
import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.util.*;
...
import org.eclipse.pde.core.*;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.*;

14% of all files that import 14% of all files that import uiui packages, packages, 
had to be fixed later on.had to be fixed later on.

71% of files that import 71% of files that import compilercompiler packages, packages, 
had to be fixed later on.had to be fixed later on.

[Schröter et al. 06]
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Percentage of bug-introducing changes for eclipse
[Zimmermann et al. 05]

Don’t program on Fridays ;-)
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Classifying Changes as Buggy or 
Clean
• Given a change can we warn a developer 

that there is a bug in it?
– Recall/Precision in 50-60% range

[Sung et al. 06]



Project Communication – Mailing lists
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Project Communication (Mailinglists)

• Most open source projects communicate 
through mailing lists or IRC channels

• Rich source of information about the inner 
workings of large projects

• Discussion cover topics such as future 
plans, design decisions, project policies, 
code or patch reviews

• Social network analysis could be performed 
on discussion threads
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Social Network Analysis

• Mailing list activity:
– strongly correlates with code 

change activity
– moderately correlates with 

document change activity
• Social network measures (in-

degree, out-degree, 
betweenness) indicate that 
committers play much more 
significant roles in the mailing 
list community than non-
committers [Bird et al. 06]
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Immigration Rate of Developers

• When will a developer be invited to join a 
project? 
– Expertise vs. interest

[Bird et al. 07]
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The Patch Review Process

• Two review styles
– RTC: Review-then-commit
– CTR: Commit-then-review

• 80% patches reviewed 
within 3.5 days and 50% 
reviewed in <19 hrs

[Rigby et al. 06]
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Measure a team’s morale around 
release time?

• Study the content of messages before and after a release
• Use dimensions from a psychometric text analysis tool:

– After Apache 1.3 release there was a drop in optimism
– After Apache 2.0 release there was an increase in sociability

[Rigby & Hassan 07]



Program Source Code
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Code Entities

Source data Mined info

Variable names and function names Software categories 
[Kawaguchi et al. 04]

Statement seq in a basic block Copy-paste code 
[Li et al. 04]

Set of functions, variables, and data 
types within a C function

Programming rules
[Li&Zhou 05]

Sequence of methods within a Java 
method

API usages 
[Xie&Pei 05] 

API method signatures API Jungloids 
[Mandelin et al. 05]
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Mining API Usage Patterns
• How should an API be used correctly?

– An API may serve multiple functionalities
– Different styles of API usage

• “I know what type of object I need, but I don’t know 
how to write the code to get the object” [Mandelin
et al. 05]
– Can we synthesize jungloid code fragments 

automatically?
– Given a simple query describing the desired code in 

terms of input and output types, return a code segment
• “I know what method call I need, but I don’t know 

how to write code before and after this method 
call” [Xie&Pei 06]
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Relationships btw Code Entities

• Mine framework reuse patterns [Michail 00] 
– Membership relationships

• A class contains membership functions
– Reuse relationships

• Class inheritance/ instantiation
• Function invocations/overriding

• Mine software plagiarism [Liu et al. 06] 
– Program dependence graphs

[Michail 99/00] http://codeweb.sourceforge.net/ for C++

http://codeweb.sourceforge.net/


Program Execution Traces
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Method-Entry/Exit States
• Goal: mine specifications (pre/post conditions) or 

object behavior (object transition diagrams)
• State of an object

– Values of transitively reachable fields
• Method-entry state

– Receiver-object state, method argument values
• Method-exit state

– Receiver-object state, updated method argument 
values, method return value

[Ernst et al. 02] http://pag.csail.mit.edu/daikon/
[Xie&Notkin 04/05][Dallmeier et al. 06] http://www.st.cs.uni-sb.de/models/

http://pag.csail.mit.edu/daikon/
http://www.st.cs.uni-sb.de/models/
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Other Profiled Program States

• Goal: detect or locate bugs
• Values of variables at certain code locations 

[Hangal&Lam 02]
– Object/static field read/write
– Method-call arguments
– Method returns 

• Sampled predicates on values of variables
[Liblit et al. 03/05][Liu et al. 05]

[Hangal&Lam 02] http://diduce.sourceforge.net/
[Liblit et al. 03/05] http://www.cs.wisc.edu/cbi/

[Liu et al. 05] http://www.ews.uiuc.edu/~chaoliu/sober.htm

http://diduce.sourceforge.net/
http://www.cs.wisc.edu/cbi/
http://www.ews.uiuc.edu/~chaoliu/sober.htm
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Executed Structural Entities

• Goal: locate bugs
• Executed branches/paths, def-use pairs
• Executed function/method calls

– Group methods invoked on the same object
• Profiling options

– Execution hit vs. count
– Execution order (sequences)

[Dallmeier et al. 05] http://www.st.cs.uni-sb.de/ample/
More related tools: http://www.csc.ncsu.edu/faculty/xie/research.htm#related

http://www.st.cs.uni-sb.de/ample/
http://www.csc.ncsu.edu/faculty/xie/research.htm#related


Q&A and break
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Part I Review

• We presented notable results based on 
mining SE data such as:
– Historical data:

• Source control: predict co-changes
• Bug databases: predict bug likelihood
• Mailing lists: gauge team morale around release time

– Other data: 
• Program source code: mine API usage patterns
• Program execution traces: mine specs, detect or 

locate bugs



Data Mining Techniques in SE

Part II: How can you mine SE data?
–Overview of data mining techniques 
–Overview of SE data processing tools and 
techniques
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Data Mining Techniques in SE

• Association rules and frequent patterns
• Classification
• Clustering
• Misc.
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Frequent Itemsets

• Itemset: a set of items
– E.g., acm={a, c, m}

• Support of itemsets
– Sup(acm)=3

• Given min_sup = 3, acm
is a frequent pattern

• Frequent pattern mining: 
find all frequent patterns 
in a database

TID Items bought
100 f, a, c, d, g, I, m, p
200 a, b, c, f, l, m, o
300 b, f, h, j, o
400 b, c, k, s, p
500 a, f, c, e, l, p, m, n

Transaction database TDB
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Association Rules

• (Time∈{Fri, Sat}) ∧ buy(X, diaper) buy(X, 
beer)
– Dads taking care of babies in weekends drink 

beer
• Itemsets should be frequent

– It can be applied extensively
• Rules should be confident

– With strong prediction capability
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A Simple Case

• Finding highly correlated method call pairs
• Confidence of pairs helps

– Conf(<a,b>)=support(<a,b>)/support(<a,a>)
• Check the revisions (fixes to bugs), find the 

pairs of method calls whose confidences 
have improved dramatically by frequent 
added fixes
– Those are the matching method call pairs that 

may often be violated by programmers
[Livshits&Zimmermann 05]
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Conflicting Patterns

• 999 out of 1000 times spin_lock is 
followed by spin_unlock
– The single time that spin_unlock does not 

follow may likely be an error
• We can detect an error without knowing the 

correctness rules

[Li&Zhou 05, Livshits&Zimmermann 05, Yang et al. 06]
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Detect Copy-Paste Code

• Apply closed sequential pattern mining techniques 
• Customizing the techniques

– A copy-paste segment typically does not have big gaps 
– use a maximum gap threshold to control

– Output the instances of patterns (i.e., the copy-pasted 
code segments) instead of the patterns

– Use small copy-pasted segments to form larger ones
– Prune false positives: tiny segments, unmappable

segments, overlapping segments, and segments with 
large gaps

[Li et al. 04]
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Find Bugs in Copy-Pasted Segments

• For two copy-pasted segments, are the 
modifications consistent?
– Identifier a in segment S1 is changed to b in 

segment S2 3 times, but remains unchanged 
once – likely a bug

– The heuristic may not be correct all the time
• The lower the unchanged rate of an 

identifier, the more likely there is a bug 

[Li et al. 04]
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Mining Rules in Traces

• Mine association rules or sequential 
patterns S F, where S is a statement and 
F is the status of program failure

• The higher the confidence, the more likely S 
is faulty or related to a fault

• Using only one statement at the left side of 
the rule can be misleading, since a fault may 
be led by a combination of statements
– Frequent patterns can be used to improve

[Denmat et al. 05]
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Mining Emerging Patterns in Traces

• A method executed only in failing runs is 
likely to point to the defect
– Comparing the coverage of passing and failing 

program runs helps
• Mining patterns frequent in failing program 

runs but infrequent in passing program runs
– Sequential patterns may be used

[Dallmeier et al. 05, Denmat et al. 05]
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Data Mining Techniques in SE

• Association rules and frequent patterns
• Classification
• Clustering
• Misc.
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Classification: A 2-step Process 

• Model construction: describe a set of 
predetermined classes
– Training dataset: tuples for model construction

• Each tuple/sample belongs to a predefined class

– Classification rules, decision trees, or math formulae
• Model application: classify unseen objects

– Estimate accuracy of the model using an independent 
test set

– Acceptable accuracy apply the model to classify 
tuples with unknown class labels
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Model Construction

Training
Data

Classification
Algorithms

IF rank = ‘professor’
OR years > 6
THEN tenured = ‘yes’

Classifier
(Model)

Name Rank Years Tenured
Mike Ass. Prof 3 No
Mary Ass. Prof 7 Yes
Bill Prof 2 Yes
Jim Asso. Prof 7 Yes

Dave Ass. Prof 6 No
Anne Asso. Prof 3 No
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Model Application

Classifier

Testing
Data Unseen Data

(Jeff, Professor, 4)

Tenured?
Name Rank Years Tenured
Tom Ass. Prof 2 No

Merlisa Asso. Prof 7 No
George Prof 5 Yes
Joseph Ass. Prof 7 Yes
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Supervised vs. Unsupervised 
Learning
• Supervised learning (classification)

– Supervision: objects in the training data set 
have labels

– New data is classified based on the training set
• Unsupervised learning (clustering)

– The class labels of training data are unknown
– Given a set of measurements, observations, 

etc. with the aim of establishing the existence of 
classes or clusters in the data
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GUI-Application Stabilizer

• Given a program state S and an event e, predict 
whether e likely results in a bug
– Positive samples: past bugs
– Negative samples: “not bug” reports

• A k-NN based approach
– Consider the k closest cases reported before
– Compare Σ 1/d for bug cases and not-bug cases, where 

d is the similarity between the current state and the 
reported states

– If the current state is more similar to bugs, predict a bug
[Michail&Xie 05]
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Data Mining Techniques in SE

• Association rules and frequent patterns
• Classification
• Clustering
• Misc.
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What is Clustering?

• Group data into clusters
– Similar to one another within the same cluster
– Dissimilar to the objects in other clusters
– Unsupervised learning: no predefined classes

Cluster 1
Cluster 2

Outliers
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Clustering and Categorization

• Software categorization
– Partitioning software systems into categories

• Categories predefined – a classification 
problem

• Categories discovered automatically – a 
clustering problem
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Software Categorization - MUDABlue

• Understanding source code
– Use Latent Semantic Analysis (LSA) to find similarity 

between software systems
– Use identifiers (e.g., variable names, function names) 

as features
• “gtk_window” represents some window
• The source code near “gtk_window” contains some GUI 

operation on the window

• Extracting categories using frequent identifiers
– “gtk_window”, “gtk_main”, and “gpointer” GTK 

related software system
– Use LSA to find relationships between identifiers

[Kawaguchi et al. 04]
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Data Mining Techniques in SE

• Association rules and frequent patterns
• Classification
• Clustering
• Misc.
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Other Mining Techniques 

• Automaton/grammar/regular expression 
learning

• Searching/matching
• Concept analysis
• Template-based analysis
• Abstraction-based analysis

http://ase.csc.ncsu.edu/dmse/miningalgs.html

http://ase.csc.ncsu.edu/dmse/miningalgs.html


How to Do Research in 
Mining SE Data
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How to do research in mining SE 
data
• We discussed results derived from:

– Historical data:
• Source control
• Bug databases
• Mailing lists

– Program data: 
• Program source code
• Program execution traces

• We discussed several mining techniques
• We now discuss how to:

– Get access to a particular type of SE data
– Process the SE data for further mining and analysis



Source Control Repositories
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Concurrent Versions System (CVS) 
Comments

[Chen et al. 01] http://cvssearch.sourceforge.net/

http://cvssearch.sourceforge.net/
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CVS Comments

• cvs log – displays 
for all revisions and 
its comments for each 
file

• cvs diff – shows 
differences between 
different versions of a 
file

• Used for program 
understanding

RCS files:/repository/file.h,v
Working file: file.h
head: 1.5
...
description:
----------------------------
Revision 1.5
Date: ...
cvs comment ...
----------------------------
...

…
RCS file: /repository/file.h,v
…
9c9,10
< old line
---
> new line
> another new line

[Chen et al. 01] http://cvssearch.sourceforge.net/

http://cvssearch.sourceforge.net/
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Code Version Histories
• CVS provides file versioning

– Group individual per-file changes into individual 
transactions: checked in by the same author with the 
same check-in comment within a short time window

• CVS manages only files and line numbers
– Associate syntactic entities with line ranges

• Filter out long transactions not corresponding to 
meaningful atomic changes
– E.g., features and bug fixes vs. branch merging

• Used to mine co-changed entities
[Hassan& Holt 04, Ying et al. 04]

[Zimmermann et al. 04] http://www.st.cs.uni-sb.de/softevo/erose/

http://www.st.cs.uni-sb.de/softevo/erose/
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Getting Access to Source Control

• These tools are commonly used
– Email: ask for a local copy to avoid taxing the project's 

servers during your analysis and development
– CVSup: mirrors a repository if supported by the 

particular project
– rsync: a protocol used to mirror data repositories
– CVSsuck: 

• Uses the CVS protocol itself to mirror a CVS repository
• The CVS protocol is not designed for mirroring; therefore, 

CVSsuck is not efficient 
• Use as a last resort to acquire a repository due to its inefficiency
• Used primarily for dead projects
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Recovering Information from CVS

Traditional Extractor

F0

St+1

F1 Ft+1Ft

Evolutionary Change Data

Compare Snapshot Facts

StS1S0 ..

..
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Challenges in recovering information 
from CVS

main() {
int a;
/*call
help*/

helpInfo();
}

helpInfo() {
errorString!

}
main() {

int a;
/*call
help*/

helpInfo();
}

helpInfo(){
int b;
}
main() {

int a;
/*call
help*/

helpInfo();
}

V1:
Undefined func.
(Link Error)

V2:
Syntax error

V3:
Valid code
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CVS Limitations

• CVS has limited query functionality and is 
slow

• CVS does not track co-changes
• CVS tracks only changes at the file level
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Inferring Transactions in CVS

• Sliding Window:
– Time window: [3-5mins on average]

• min 3mins 
• as high as 21 mins for merges 

• Commit Mails

[Zimmermann et al. 2004]
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Noise in CVS Transactions

• Drop all transactions above a large 
threshold

• For Branch merges either look at CVS 
comments or use heuristic algorithm 
proposed by Fischer et al. 2003
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Noise in detecting developers

• Few developers are given commit privileges 
• Actual developer is usually mentioned in the 

change message
• One must study project commit policies before 

reaching any conclusions

[German  2006]



Source Control and Bug Repositories
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Bugzilla

bill@firefox.org

Adapted from Anvik et al.’s slides



T. Xie and A. E. Hassan: Mining Software Engineering Data 83

Sample Bugzilla Bug Report
• Bug report image
• Overlay the triage questions

Duplicate?

Reproducible?
Bugzilla: open source bug tracking tool

http://www.bugzilla.org/
[Anvik et al. 06] 

http://www.cs.ubc.ca/labs/spl/projects/bugTriage.html

Adapted from Anvik et al.’s slides

Assigned To: ?

http://www.bugzilla.org/
http://www.cs.ubc.ca/labs/spl/projects/bugTriage.html
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Acquiring Bugzilla data

• Download bug reports using the XML export 
feature (in chunks of 100 reports)

• Download attachments (one request per 
attachment)

• Download activities for each bug report (one 
request per bug report)
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Using Bugzilla Data

• Depending on the analysis, you might need to 
rollback the fields of each bug report using the 
stored changes and activities 

• Linking changes to bug reports is more or less 
straightforward: 
– Any number in a log message could refer to a bug 

report
– Usually good to ignore numbers less than 1000. Some 

issue tracking systems (such as JIRA) have identifiers 
that are easy to recognize (e.g., JIRA-4223)
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So far: Focus on fixes

fixes issues mentioned in bug 45635: [hovering] rollover 
hovers
- mouse exit detection is safer and should not allow for 

loopholes any more, except for shell deactiviation
- hovers behave like normal ones:

- tooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

teicher      2003-10-29 16:11:01

Fixes give only the Fixes give only the locationlocation of a defect,of a defect,
not when it was introduced.not when it was introduced.

[Sliwerski et al. 05 –
Slides by Zimmermann]
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Bug-introducing changes

BugBug--introducing changes are changes that introducing changes are changes that 
lead to problems as indicated by later fixes.lead to problems as indicated by later fixes.

...
if (foo!=null) {

foo.bar();
...

FIX

if (foo!=null) {
...
if (foo==null) {

foo.bar();
...

BUG-INTRODUCING

if (foo==null) { later fixed
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Life-cycle of a “bug”

fixes issues mentioned in bug 45635: [hovering] rollover hovers
- mouse exit detection is safer and should not allow for 
loopholes any more, except for shell deactiviation

- hovers behave like normal ones:
- tooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

BUG REPORT

FIX
CHANGE

BUG-INTRODUCING
CHANGE
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$ cvs annotate -r 1.17 Foo.java

The SZZ algorithm

1.11.1
88

FIXED BUG
42233

$ cvs annotate -r 1.17 Foo.java
...

20: 1.11 (john 12-Feb-03):     return i/0;
...

40: 1.14 (kate 23-May-03):     return 42;
...

60: 1.16 (mary 10-Jun-03):     int i=0;
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1.11.1
44

1.11.1
66

1.11.1
11

1.11.1
11

1.11.1
4      4      

1.11.1
6 6 

The SZZ algorithm

1.11.1
88

FIXED BUG
42233

BUG
INTRO

BUG
INTRO

BUG
INTRO

$ cvs annotate -r 1.17 Foo.java
...

20: 1.11 (john 12-Feb-03):     return i/0;
...

40: 1.14 (kate 23-May-03):     return 42;
...

60: 1.16 (mary 10-Jun-03):     int i=0;
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fixes issues mentioned in bug 45635: [hovering] rollover 
hovers
- mouse exit detection is safer and should not allow for 
loopholes any more, except for shell deactiviation

- hovers behave like normal ones:
- tooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

BUG REPORT

closedsubmitted

1.11.1
44

1.11.1
66

The SZZ algorithm

1.11.1
44

1.11.1
66

1.11.1
88

FIXED BUG
42233

BUG
INTRO

BUG
INTRO

BUG
INTRO

1.11.1
11

1.11.1
44

1.11.1
66

BUG
INTRO

BUG
INTRO

REMOVE 
FALSE POSITIVES



Project Communication – Mailing lists
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Acquiring Mailing lists

• Usually archived and available from the 
project’s webpage

• Stored in mbox format:
– The mbox file format sequentially lists every 

message of a mail folder
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Challenges using Mailing lists data I

• Unstructured nature of email makes 
extracting information difficult
– Written English

• Multiple email addresses
– Must resolve emails to individuals

• Broken discussion threads
– Many email clients do not include “In-Reply-To” 

field
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Challenges using Mailing lists data II

• Country information is not accurate
– Many sites are hosted in the US: 

• Yahoo.com.ar is hosted in the US

• Tools to process mailbox files rarely scale to 
handle such large amount of data (years of 
mailing list information)
– Will need to write your own



Program Source Code
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Acquiring Source Code

• Ahead-of-time download directly from code 
repositories (e.g., Sourceforge.net)
– Advantage: offline perform slow data processing and 

mining
– Some tools (Prospector and Strathcona) focus on 

framework API code such as Eclipse framework APIs
• On-demand search through code search engines:

– E.g., http://www.google.com/codesearch
– Advantage: not limited on a small number of downloaded 

code repositories
Prospector: http://snobol.cs.berkeley.edu/prospector
Strathcona: http://lsmr.cs.ucalgary.ca/projects/heuristic/strathcona/

http://www.google.com/codesearch
http://snobol.cs.berkeley.edu/prospector
http://lsmr.cs.ucalgary.ca/projects/heuristic/strathcona/
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Processing Source Code

• Use one of various static analysis/compiler tools 
(McGill Soot, BCEL, Berkeley CIL, GCC, etc.)

• But sometimes downloaded code may not be 
compliable 
– E.g., use Eclipse JDT http://www.eclipse.org/jdt/ for AST 

traversal
– E.g., use exuberant ctags http://ctags.sourceforge.net/ for 

high-level tagging of code
• May use simple heuristics/analysis to deal with 

some language features [Xie&Pei 06, Mandelin et al. 05]
– Conditional, loops, inter-procedural, downcast, etc.

http://www.eclipse.org/jdt/
http://ctags.sourceforge.net/


Program Execution Traces
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Acquiring Execution Traces

• Code instrumentation or VM instrumentation
– Java: ASM, BCEL, SERP, Soot, Java Debug Interface
– C/C++/Binary: Valgrind, Fjalar, Dyninst

• See Mike Ernst’s ASE 05 tutorial on “Learning from 
executions: Dynamic analysis for software 
engineering and program understanding”

http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-
ase2005-abstract.html

More related tools: http://www.csc.ncsu.edu/faculty/xie/research.htm#related

http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://www.csc.ncsu.edu/faculty/xie/research.htm#related
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Processing Execution Traces

• Processing types: online (as data is 
encountered) vs. offline (write data to file)

• May need to group relevant traces together
– e.g., based on receiver-object references
– e.g., based on corresponding method entry/exit

• Debugging traces: view large log/trace files 
with V-file editor: http://www.fileviewer.com/

http://www.fileviewer.com/


Tools and Repositories
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Repositories Available Online

• Promise repository: 
– http://promisedata.org/

• Eclipse bug data: 
– http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/

• MSR Challenge 2007 (data for Mozilla & Eclipse):
– http://msr.uwaterloo.ca/msr2007/challenge/

• FLOSSmole:
– http://ossmole.sourceforge.net/

• Software-artifact infrastructure repository:
– http://sir.unl.edu/portal/index.html

http://promisedata.org/
http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/
http://msr.uwaterloo.ca/msr2007/challenge/
http://ossmole.sourceforge.net/
http://sir.unl.edu/portal/index.html
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Eclipse Bug Data

[Schröter et al. 06] http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/

• Defect counts are listed 
as counts at the plug-in, 
package and 
compilationunit levels. 

• The value field 
contains the actual 
number of pre- ("pre") 
and post-release defects 
("post"). 
• The average ("avg") 
and maximum ("max") 
values refer to the 
defects found in the 
compilation units 
("compilationunits"). 

http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/
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Metrics in the Eclipse Bug Data
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Abstract Syntax Tree Nodes in 
Eclipse Bug Data
• The AST node 

information can be 
used to calculate 
various metrics
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FLOSSmole
• FLOSSmole

– provides raw data about open source projects 
– provides summary reports about open source projects 
– integrates donated data from other research teams 
– provides tools so you can gather your own data

• Data sources
– Sourceforge
– Freshmeat
– Rubyforge
– ObjectWeb
– Free Software Foundation (FSF)
– SourceKibitzer 

http://ossmole.sourceforge.net/

http://ossmole.sourceforge.net/
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Example Graphs from FlossMole
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Analysis Tools
• R

– http://www.r-project.org/
– R is a free software environment for statistical computing 

and graphics
• Aisee

– http://www.aisee.com/
– Aisee is a graph layout software for very large graphs

• WEKA
– http://www.cs.waikato.ac.nz/ml/weka/
– WEKA contains a collection of machine learning 

algorithms for data mining tasks
• More tools: http://ase.csc.ncsu.edu/dmse/resources.html

http://www.r-project.org/
http://www.aisee.com/
http://www.cs.waikato.ac.nz/ml/weka/
http://ase.csc.ncsu.edu/dmse/resources.html
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Data Extraction/Processing Tools

• Kenyon
– http://dforge.cse.ucsc.edu/projects/kenyon/

• Mylar (comes with API for Bugzilla and 
JIRA)
– http://www.eclipse.org/mylar/

• Libresoft toolset
– Tools (cvsanaly/mlstats/detras) for recovering 

data from cvs/svn and mailinglists
– http://forge.morfeo-project.org/projects/libresoft-

tools/

http://dforge.cse.ucsc.edu/projects/kenyon/
http://www.eclipse.org/mylar/
http://forge.morfeo-project.org/projects/libresoft-tools/
http://forge.morfeo-project.org/projects/libresoft-tools/
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Kenyon

Source 
Control 

Repository

Filesystem

Extract
Automated
configuration
extraction

Save 
Persist gathered 
metrics & facts

Kenyon 
Repository 
(RDBMS/
Hibernate)

Analyze
Query DB, 
add new 
facts

Analysis 
Software

Compute
Fact extraction
(metrics, static 
analysis)

[Adapted from Bevan et al. 05]
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Publishing Advice

• Report the statistical significance of your results:
– Get a statistics book (one for social scientist, not for 

mathematicians) 
• Discuss any limitations of your findings based on 

the characteristics of the studied repositories:
– Make sure you manually examine the repositories. Do 

not fully automate the process!
– Use random sampling to resolve issues about data noise

• Relevant conferences/workshops: 
– main SE conferences, ICSM, MSR, WODA, …
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Mining Software Repositories

• Very active research area in SE:
– MSR is one of the most attended ICSE 

workshops in last 4 years (MSR 2006: sold out)
– Special Issue of IEEE TSE on MSR:

• 15 % of all submissions of TSE in 2004
• Fastest review cycle in TSE history: 8 months

– Special Issue of Journal of Empirical Software 
Engineering (late 2007/2008)



Q&A

Mining Software Engineering Data Bibliography
http://ase.csc.ncsu.edu/dmse/
•What software engineering tasks can be helped by data mining?
•What kinds of software engineering data can be mined?
•How are data mining techniques used in software engineering?
•Resources

http://ase.csc.ncsu.edu/dmse/
http://ase.csc.ncsu.edu/dmse/setasks.html
http://ase.csc.ncsu.edu/dmse/sedata.html
http://ase.csc.ncsu.edu/dmse/miningalgs.html
http://ase.csc.ncsu.edu/dmse/resources.html
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Example Tools

• MAPO: mining API usages from open source 
repositories [Xie&Pei 06]

• DynaMine: mining error/usage patterns from 
code revision histories [Livshits&Zimmermann 05]

• BugTriage: learning bug assignments from 
historical bug reports [Anvik et al. 06]
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Demand-Driven Or Not

Any-gold 
mining

Demand-driven 
mining

Examples

Advantages

Issues

DynaMine, … MAPO, BugTriage, …

Surface up only cases 
that are applicable

Exploit demands to filter 
out irrelevant information

How much gold is 
good enough given the 
amount of data to be 
mined?

How high percentage of 
cases would work well?



T. Xie and A. E. Hassan: Mining Software Engineering Data 117

Code vs. Non-Code

Code/
Programming Langs

Non-Code/
Natural Langs

Examples

Advantages

Issues

MAPO, DynaMine, … BugTriage, CVS/Code 
comments, emails, docs

Relatively stable and 
consistent 
representation

Common source of 
capturing programmers’ 
intentions
What project/context-
specific heuristics to use?



T. Xie and A. E. Hassan: Mining Software Engineering Data 118

Static vs. Dynamic

Static Data: code 
bases, change histories

Dynamic Data: prog
states, structural profiles

Examples

Advantages

Issues

MAPO, DynaMine, … Spec discovery, …

No need to set up exec 
environment;
More scalable

More-precise info

How to reduce false 
positives?

How to reduce false 
negatives?
Where tests come from?
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Snapshot vs. Changes

Code snapshot Code change history

Examples

Advantages

Issues

MAPO, … DynaMine, …

Larger amount of 
available data

Revision transactions 
encode more-focused 
entity relationships
How to group CVS 
changes into transactions?
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Characteristics in Mining SE Data

• Improve quality of source data: data preprocessing
– MAPO: inlining, reduction
– DynaMine: call association
– BugTriage: labeling heuristics, inactive-developer removal

• Reduce uninteresting patterns: pattern postprocessing
– MAPO: compression, reduction
– DynaMine: dynamic validation

• Source data may not be sufficient
– DynaMine: revision histories
– BugTriage: historical bug reports

SE-Domain-Specific Heuristics are important
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