Mining Software Engineering Data

Tao Xie Ahmed E. Hassan
North Carolina State University University of Victoria
www.csc.ncsu.edu/faculty/xie www.ece.uvic.ca/~ahmed
xie@csc.ncsu.edu ahmed@uvic.ca

Some slides are adapted from KDD 06 tutorial slides co-
prepared by Jian Pei from Simon Fraser University, Canada

An up-to-date version of this tutorial is available at
http://ase.csc.ncsu.edu/dmse/dmse-icseQ7-tutorial.pdf

mailto:ahmed@uvic.ca
mailto:xie@csc.ncsu.edu
http://ase.csc.ncsu.edu/dmse/dmse-icse07-tutorial.pdf

Tao Xie

 Assistant Professor at North Carolina State
University, USA

» Leads the ASE research group at NCSU

» Co-presented a tutorial on “Data Mining for
Software Engineering” at KDD 2006

» Co-organizer of Dagstuhl Seminar on
“Mining Programs and Processes” 2007
Automated [7

Research

Software croup \ [}
EngineerinQancsy il /e

T. Xie and A. E. Hassan: Mining Software Engineering Data

Ahmed E. Hassan

» Assistant Professor at the University of
Victoria, Canada

» Leads the SAIL research group at UVic

» Co-chair for Workshop on Mining Software
Repositories (MSR) from 2004-2006

» Chair of the steering committee for MSR

B A> Mining Software Repositories

SorFtware AnaLysis & INTELLIGENCE LaB

T. Xie and A. E. Hassan: Mining Software Engineering Data

Acknowledgments

» Jian Pei, SFU

 Thomas Zimmermann, Saarland U
* Peter Rigby, UVic

* Sunghun Kim, MIT

 John Anvik, UBC

T. Xie and A. E. Hassan: Mining Software Engineering Data

Tutorial Goals

e Learn about:

— Recent and notable research and researchers in mining
SE data

— Data mining and data processing techniques and how to
apply them to SE data

— Risks in using SE data due to e.g., noise, project culture

By end of tutorial, you should be able:
— Retrieve SE data
— Prepare SE data for mining
— Mine interesting information from SE data

T. Xie and A. E. Hassan: Mining Software Engineering Data

Mining SE Data

o

. MAIN GOAL S

— Transform static rec@fd-
keeping SE data tofactive
data

— Make SE data actiqnable
by uncovering hidd¢
patterns and trends <> <
ovsmnefanf
<4

Code
repositor

Executio
traces
T. Xie and A. E. Hassan: Mining Software Engineering Data

J

t

Mining SE Data

« SE data can be used to:

— Gain empirically-based understanding of
software development

— Predict, plan, and understand various aspects

of a project
el

— Support future development and project
management activities

T. Xie and A. E. Hassan: Mining Software Engineering Data

Overview of Mining SE Data

programming ||defect detection testing debugging maintenance

software engineering tasks helped by data mining

"

e association/ :
classification clustering
patterns
data mining techniques
3
structural bug
entities reports B

software engineering data

5
T. Xie and A. E. Hassan: Mining Software Engineering Data

code
bases

program
states

Tutorial Outline

« Part I: What can you learn from SE data?

— A sample of notable recent findings for different
SE data types

* Part Il: How can you mine SE data?
— Overview of data mining techniques

— Overview of SE data processing tools and
techniques

T. Xie and A. E. Hassan: Mining Software Engineering Data

Types of SE Data

* Historical data
— Version or source control: cvs, subversion, perforce
— Bug systems: bugzilla, GNATS, JIRA
— Mailing lists: mbox

« Multi-run and multi-site data

— Execution traces
— Deployment logs

« Source code data
— Source code repositories: sourceforge.net

T. Xie and A. E. Hassan: Mining Software Engineering Data

Historical Data

“History Is a guide to navigation in
perilous times. History iIs who we are
and why we are the way we are.”

- David C. McCullough

T. Xie and A. E. Hassan: Mining Software Engineering Data

Historical Data

* Track the evolution of a software project:
— source control systems store changes to the code
— defect tracking systems follow the resolution of defects

— archived project communications record rationale for
decisions throughout the life of a project

« Used primarily for record-keeping activities:
— checking the status of a bug
— retrieving old code

T. Xie and A. E. Hassan: Mining Software Engineering Data

Percentage of Project Costs
Devoted to Maintenance

100 1
95 -
90 -
85 -
80 -
73 -
70 -
65 -

Moad 90 Erlikh 00

McKee 1984

Port 98 Huff 90

60
1975

1980

1985 1990 1995 2000

2005

T. Xie and A. E. Hassan: Mining Software Engineering Data

Survey of Software Maintenance
Activities

- Perfective: add new functionality
fix faults
new file formats, refactoring

18.2
Lientz, Swanson, Tomhkins [1978] Schach, Jin, Yu, Heller, Offutt [2003]
Nosek, Palvia [1990] Mining ChangelL.ogs
MIS Survey (Linux, GCC, RTP)

T. Xie and A. E. Hassan: Mining Software Engineering Data

Source Control Repositories

Source Control Repositories

* A source control system
tracks changes to rangeumt |—| Change Chengs
ChangeUnits

« Example of ChangeUnits:

— File (most common)

Modify

Add

AN

Remove

Fl

Q
_ Fun Cthﬂ Developer e ChangelList Chgrr;/%zList << FR
— Dependency (e.g., Call) /\ oM
« Each ChangeUnit: iy

— It tracks the developer,
time, change message, co-
changing Units

T. Xie and A. E. Hassan: Mining Software Engineering Data

Change Propagation

NewRe@., BUgFIX .5\ does a change in one source code

entity propagate to other entities?”

Determine
Initial Entity
To Change

Determine Consult
Other Entities Guru for
To Change Advice

For Each Entity

Suggested Entity

T. Xie and A. E. Hassan: Mining Software Engineering Data

Measuring Change Propagation

.. predicted entities which changed
Precision =

predicted entities

predicted entities which changed
changed entities

Recall =

* We want:
— High Precision to avoid wasting time
— High Recall to avoid bugs

T. Xie and A. E. Hassan: Mining Software Engineering Data

Guiding Change Propagation

* Mine association rules from change history

* Use rules to help propagate changes:
— Recall as high as 44%
— Precision around 30%

* High precision and recall reached in < 1mth

* Prediction accuracy improves prior to a
release (i.e., during maintenance phase)

[Zimmermann et al. 05]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Code Sticky Notes

* Traditional dependency graphs and program
understanding models usually do not use
historical information

« Static dependencies capture only a static
view of a system — not enough detail!

* Development history can help understand
the current structure (architecture) of a
software system

[Hassan & Holt 04]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Conceptual & Concrete Architecture

gNetBSDz

Conceptual (proposed) Concrete (reality)
Hard —— Convergence
—> Depend ?rrravr\]/:re « « ¥Divergence
Hardware [] subsystem yy A:\\A W i
A A \ \ Kernel Fault i_—_—_—l_
\ Handler [~ = — I
Kernel Fault \ I I
I
Handler \ v I I I
-
Y 4 = Pager I L I I
= I
p e L
ager
/ Vitkal AJA 1 | v Policy FileSystem |— . | | |
[& x | I |
Vi”;\‘/la;i’:t‘_’dr' VM Policy | FileSystem | | L 9 _____ | | |
7
o< —-—-—-—--l

Why? Who?
When? Where?

T. Xie and A. E. 'S

Investigating Unexpected Dependencies
Using Historical Code Changes

» Eight unexpected dependencies
« All except two dependencies existed since day one:
— Virtual Address Maintenance — Pager

— Pager — Hardware Translations

Which? vm_map_entry create (in src/sys/vm/Attic/vm_map.c)
' depends on_pager_map (in /src/sys/luvm/uvm_pager.c)

Who? cgd

1993/04/09 15:54:59
Revision 1.2 of src/sys/vm/Attic/vm_map.c

from sean eric fagan:

it seems to keep the vm system from deadlocking the
system when it runs out of swap + physical memory.
Why? prevents the system from giving the last page(s) to
anything but the referenced "processes" (especially
important is the pager process, which should never
have to wait for a free page).

When?

T. Xie and A. E. Hassan: Mining Software Engineering Data

Studying Conway’s Law

« Conway’s Law:

“The structure of a software system is a direct
reflection of the structure of the development
team”

Subsytem >contain containq{ Team }
| |

contain contain

v v

Source File Hhaekedg{ Developer }

[Bowman et al. 99]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Linux: Conceptual, Ownership,
Concrete

File System File System
File System / (80) \ /
3 ‘ 3 A
/ 3 \
y | Y
" > N . Memory Process Network Memory Process Network
emory | o > rocess - etwork Manager —1— Scheduler —2-— Interface ‘ N » I)
Manager Scheduler Interface (S)h (16) G1) Manager Scheduler Interface
1 4
Inter-Process Inter-Process / Inter-Process
RSN . S
Communication Communication (2) Communication
Legend: ——expected dependency —» Lesend: Subsystem # common Legend: ——extracted dependency —»
s (# developers) developers

Conceptual Ownership Concrete
Architecture Architecture Architecture

T. Xie and A. E. Hassan: Mining Software Engineering Data

Source Control and Bug Repositories

Predicting Bugs

« Studies have shown that most complexity metrics
correlate well with LOC!
— Graves et al. 2000 on commercial systems
— Herraiz et al. 2007 on open source systems

* Noteworthy findings:
— Previous bugs are good predictor of future bugs
— The more a file changes, the more likely it will have
bugs in it
— Recent changes affect more the bug potential of a file
over older changes (weighted time damp models)
— Number of developers is of little help in predicting bugs

— Hard to generalize bug predictors across projects
unless in similar domains [Nagappan, Ball et al. 2006]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Using Imports in Eclipse to Predict

Bugs

71% of files that import compiler packages,
had to be fixed later on.

/

import org.eclipse.jdt.internal.compiler.lookup.*;
import org.eclipse.jdt.internal.compiler.*;

import org.eclipse.jdt.internal.compiler.ast.”;
import org.eclipse.jdt.internal.compiler.util.*;

import org.eclipse.pde.core.”;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.”;

\ 14% of all files that import ui packages,

had to be fixed later on.

[Schroter et al. 06]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Don’t program on Fridays ;-)

Monday
Tuesday

Wednesday

Thursday 12.1%

Saturday 11.7% DO NOT @

PROGRAM
""U1 LON FRIDAYS!

Sunday

0% 2.5% 5.0% 7.5% 10.0% 12.5%

Percentage of bug-introducing changes for eclipse _.
[Zimmermann et al. 05]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Classifying Changes as Buggy or

Clean

* Given a change can we warn a developer

that there is a

bug in it?

— Recall/Precision in 50-60% range

£ Java - WorkRequest. java - Eclipse SDK
File Edit Source Refactor Nawvigate Search Project Run

ry- H5-0-Q- | EEG- | ™
IS Package Explarer

Hizrarchy

= cf =Edt [cvs.sourceforge.net] -
= & beh

Decaration
in Package
Explarar
(file level)

Segrent java 1.1 (ASCID
ay.java 1.6 (ASCIL bey)

g 114 (ASCII -kkw)
&Y packgle html 1.1 (ASCIT -4k}
1) ProgiessObsanver.java 1.1 (ASCIL -+
¥ Rehdwritslock. java 1.7 CASCIT Kk
1% pomentBuffer. java 1.1 (ASCIT -kky)
| WorkRaguest.java (2) cathed methods
| WorkThread.java 1.7 (ASCID Rk
| wrorkThreadPool. java (2) cached maths
5 workThreadProoressListensr java 1.2 ¥

Tendt
highlighter
ar foal fip

kThreadPool. java 1] WorkRequest java 2

if {thread instanceof WorkThresfl)
{ {WorkThread) chread) . zecPfogressValue (value) ;

Seta the maximum progress value.
* @param value The progress value.
* gdeprecated use {[(link #=setMaximum|long))
LY

lic void setProgressHaximum(int value)

Threasd thread = Thread.curr
ifc

tThresd() :
ead instanceof WorkThread)
{ (WorkThread) thread) . setFrogressfax imums (value) :

Marker in the
averview ruler

Decoration
n the
Outline

largeValues : boolesn
setabortsbledboclean;
set Ratus String)

@ § setProgreseysusiint)
@ § estProgressMarimu(
@ setValelong)

@ etMacrumlng)

Va1 T o
< »
) Petential Bug o
Pl evade oechraien cort [Lt vw
FEdt projact: 209 cached items.
File | Package Class | Method | Signature -~
orgigitfspiutifwarkTheeadPocl.java ceg.gjt sp.ukil WorkThreadPool getThread (irt indec)
orggifspiutifworkTheeadPocl java org.gjt.spoutil workThreadPool — addworkRequest {Runnable ron, boolean indiwT)
arg/gitfspiutlfWorkR equest. java crg. git. . kil WorkReguest setProgressialue

& it
orglaitlspliedt textares TaxtAras,,
gt fepfiedt textaraa Tact Araa. .

setBinckCaretE
pantSCresning

org.git.spjedit.te... TextAreaPainter
org.git.ep.paditte.., TextAreabsten

arataitisniiedt et sreat I ot Teod ceo it sn et be Tk Textirna oetR mctParam:

‘WorkR equest satPrograssMas. .,

{Graphics2D gfx, ink firstLine, int lastLine, int[] p

{icé caret iné ool sent]

T. Xie and A. E. Hassan: Mining Software Engineering Data

[Sung et al. 06]

Project Communication — Mailing lists

Project Communication (Mailinglists)

* Most open source projects communicate
through mailing lists or IRC channels

* Rich source of information about the inner
workings of large projects

* Discussion cover topics such as future
plans, design decisions, project policies,
code or patch reviews

* Social network analysis could be performed
on discussion threads

T. Xie and A. E. Hassan: Mining Software Engineering Data

« Mailing list activity:
— strongly correlates with code
change activity
— moderately correlates with
document change activity
« Social network measures (in-
degree, out-degree,
betweenness) indicate that W
committers play much more /7_\&%% B
significant roles in the ma|I|ng j}ﬁiQ s Gt
list community than non- (s
committers /;/{

[Bird et al. 06]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Immigration Rate of Developers

* When will a developer be invited to join a
project?
— Expertise vs. interest

Smoothed hazard estimate

.0025
|

.0015 .002
| |

.001
!

.0005
|

analysis time [B”’d et al. 07]

T. Xie and A. E. Hassan: Mining Software Engineering Data

The Patch Review Process

* Two review styles 0
— RTC: Review-then-commit # |
— CTR: Commit-then-review g ol

- 80% patches reviewed ¢ /’f
within 3.5 days and 50% : 3| // /wde—
reviewed in <19 hrs E B e

01 1 10 100
Days (log)

0.001 0.0

[Rigby et al. 06]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Measure a team’s morale around
release time?

Dimension [.3 2.0
Optimism -0.37
Tentative -1.3
References to Time I.1
Future tense verbs | -0.7
Social Processes * 0.74
Inclusive * -0.64
Table 4. Mean differences for Apache 1.3 and
2.0 releases. (* p > 0.05, otherwise p < (.05)

« Study the content of messages before and after a release

« Use dimensions from a psychometric text analysis tool:
— After Apache 1.3 release there was a drop in optimism

— After Apache 2.0 release there was an increase in sociability
[Rigby & Hassan 07]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Program Source Code

Code Entities

Source data

Mined info

Variable names and function names

Software categories
[Kawaguchi et al. 04]

Statement seq in a basic block

Copy-paste code
[Li et al. 04]

Set of functions, variables, and data
types within a C function

Programming rules
[Li&Zhou 05]

Sequence of methods within a Java |API usages
method [Xie&Pei 05]
API method signatures API Jungloids

[Mandelin et al. 03]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Mining API Usage Patterns

 How should an API be used correctly?
— An APl may serve multiple functionalities
— Different styles of APl usage

* “I know what type of object | need, but | don’t know
how to write the code to get the object” [Mandelin
et al. 09]

— Can we synthesize jungloid code fragments
automatically?

— Given a simple query describing the desired code in
terms of input and output types, return a code segment
* “| know what method call | need, but | don’t know

how to write code before and after this method
call” [Xie&Pei 06]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Relationships btw Code Entities

* Mine framework reuse patterns [Michail 00]

— Membership relationships
A class contains membership functions

— Reuse relationships
 Class inheritance/ instantiation
* Function invocations/overriding

* Mine software plagiarism [Liu et al. 06]
— Program dependence graphs

[Michail 99/00] htip://codeweb.sourceforge.net/ for C++

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://codeweb.sourceforge.net/

Program Execution Traces

Method-Entry/Exit States

« Goal: mine specifications (pre/post conditions) or
object behavior (object transition diagrams)

« State of an object

— Values of transitively reachable fields
* Method-entry state

— Receiver-object state, method argument values
* Method-exit state

— Receiver-object state, updated method argument
values, method return value

[Ernst et al. 02] hitp://pag.csail.mit.edu/daikon/
[Xie&Notkin 04/05][Dallmeier et al. 06] hitp://www.st.cs.uni-sb.de/models/

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://pag.csail.mit.edu/daikon/
http://www.st.cs.uni-sb.de/models/

Other Profiled Program States

« Goal: detect or locate bugs

 Values of variables at certain code locations
[Hangal&Lam 02]

— Object/static field read/write
— Method-call arguments
— Method returns

« Sampled predicates on values of variables
[Liblit et al. 03/05][Liu et al. 05]

[Hangal&Lam 02] hitp://diduce.sourceforge.net/
[Liblit et al. 03/05] hitp://www.cs.wisc.edu/cbi/
[Liu et al. 05] htip://www.ews.uiuc.edu/~chaoliu/sober.htm

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://diduce.sourceforge.net/
http://www.cs.wisc.edu/cbi/
http://www.ews.uiuc.edu/~chaoliu/sober.htm

Executed Structural Entities

* Goal: locate bugs
« Executed branches/paths, def-use pairs

* Executed function/method calls

— Group methods invoked on the same object
* Profiling options

— Execution hit vs. count

— Execution order (sequences)

[Dallmeier et al. 05] http://www.st.cs.uni-sb.de/ample/
More related tools: http://www.csc.ncsu.edu/faculty/xie/research.htm#related

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://www.st.cs.uni-sb.de/ample/
http://www.csc.ncsu.edu/faculty/xie/research.htm#related

Q&A and break

Part | Review

* We presented notable results based on
mining SE data such as:

— Historical data:
« Source control: predict co-changes
* Bug databases: predict bug likelihood
* Mailing lists: gauge team morale around release time

— Other data:

* Program source code: mine API| usage patterns

* Program execution traces: mine specs, detect or
locate bugs

T. Xie and A. E. Hassan: Mining Software Engineering Data

Data Mining Techniques in SE

Part Il: How can you mine SE data?
—QOverview of data mining techniques

—Overview of SE data processing tools and
techniques

Data Mining Techniques in SE

* Association rules and frequent patterns
 Classification

» Clustering

* Misc.

T. Xie and A. E. Hassan: Mining Software Engineering Data

Frequent Itemsets

I
* [temset: a set of items

— E.g., acm={a, c, m} Transaction database TDB
e Support of itemsets
PP TID ltems bought
— Sup(acm)=3

Gi _ _ 3 100 (f,a,c,d,g,I,m,p
lven min_sup = 3, acm 200 |a b cflmo

Is a frequent patterr-1 | 300 |b.f.hj o

* Frequent pattern mining: 400 |b,c k, s, p
find all frequent patterns 500 a,f,c,e’l 0. m, N
In a database —

T. Xie and A. E. Hassan: Mining Software Engineering Data

Association Rules

* (Timee{Fri, Sat}) A buy(X, diaper) = buy(X,
beer)

— Dads taking care of babies in weekends drink
beer

* |temsets should be frequent
— It can be applied extensively

 Rules should be confident
— With strong prediction capabillity

T. Xie and A. E. Hassan: Mining Software Engineering Data

A Simple Case

* Finding highly correlated method call pairs

» Confidence of pairs helps
— Conf(<a,b>)=support(<a,b>)/support(<a,a>)

* Check the revisions (fixes to bugs), find the
pairs of method calls whose confidences

have improved dramatically by frequent
added fixes

— Those are the matching method call pairs that
may often be violated by programmers

[Livshits&Zimmermann 05]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Conflicting Patterns

* 999 out of 1000 times spin_lock is
followed by spin_unlock

— The single time that spin_unlock does not
follow may likely be an error

* We can detect an error without knowing the
correctness rules

[Li&Zhou 05, Livshits&Zimmermann 05, Yang et al. 06]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Detect Copy-Paste Code

* Apply closed sequential pattern mining techniques

e Customizing the techniques

— A copy-paste segment typically does not have big gaps
— use a maximum gap threshold to control

— Output the instances of patterns (i.e., the copy-pasted
code segments) instead of the patterns

— Use small copy-pasted segments to form larger ones

— Prune false positives: tiny segments, unmappable
segments, overlapping segments, and segments with
large gaps

[Li et al. 04]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Find Bugs in Copy-Pasted Segments

* For two copy-pasted segments, are the
modifications consistent?

— Identifier a in segment S1 is changed to b in
segment S2 3 times, but remains unchanged
once — likely a bug

— The heuristic may not be correct all the time

* The lower the unchanged rate of an
identifier, the more likely there is a bug

[Li et al. 04]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Mining Rules in Traces

* Mine association rules or sequential
patterns S =2 F, where S is a statement and
F is the status of program failure

* The higher the confidence, the more likely S
Is faulty or related to a fault

* Using only one statement at the left side of
the rule can be misleading, since a fault may
be led by a combination of statements

— Frequent patterns can be used to improve
[Denmat et al. 03]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Mining Emerging Patterns in Traces

* A method executed only in failing runs is
likely to point to the defect

— Comparing the coverage of passing and failing
program runs helps

* Mining patterns frequent in failing program
runs but infrequent in passing program runs

— Sequential patterns may be used

[Dallmeier et al. 05, Denmat et al. 05]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Data Mining Techniques in SE

« Association rules and frequent patterns
 Classification

» Clustering

* Misc.

T. Xie and A. E. Hassan: Mining Software Engineering Data

Classification: A 2-step Process

 Model construction: describe a set of
predetermined classes

— Training dataset: tuples for model construction
« Each tuple/sample belongs to a predefined class

— Classification rules, decision trees, or math formulae

* Model application: classify unseen objects

— Estimate accuracy of the model using an independent
test set

— Acceptable accuracy - apply the model to classify
tuples with unknown class labels

T. Xie and A. E. Hassan: Mining Software Engineering Data

Model Construction

N Classification
R Algorithms
Training
Data
-~ /\1
N

Name Rank Classifier
Mike | Ass. Prof (Model)

Mary | Ass. Prof
Bill Prof
Jim | Asso. Prof

Dave | Ass. Prof

Anne | Asso. Prof

/N
IF rank = “professor’

OR years > 6
THEN tenured = ‘yes’

T. Xie and A. E. Hassan: Mining Software Engineering Data

Model Application

N
S

’ Classifier \
@
Testing >
S AN
/ \ (Jeff, Professor, 4)

Name Rank Years
Tenured? l

Tom | Ass. Prof 2
1es

Merlisa | Asso. Prof V4
George Prof
Joseph | Ass. Prof

T. Xie and A. E. Hassan: Mining Software Engineering Data

Supervised vs. Unsupervised

L earning

* Supervised learning (classification)

— Supervision: objects in the training data set
have labels

— New data is classified based on the training set

* Unsupervised learning (clustering)
— The class labels of training data are unknown

— Given a set of measurements, observations,
etc. with the aim of establishing the existence of
classes or clusters in the data

T. Xie and A. E. Hassan: Mining Software Engineering Data

GUI-Application Stabilizer

« Given a program state S and an event e, predict
whether e likely results in a bug
— Positive samples: past bugs
— Negative samples: “not bug” reports

A k-NN based approach
— Consider the k closest cases reported before

— Compare 2 1/d for bug cases and not-bug cases, where
d is the similarity between the current state and the
reported states

— If the current state is more similar to bugs, predict a bug
[Michail&Xie 05]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Data Mining Techniques in SE

« Association rules and frequent patterns
 Classification

» Clustering

* Misc.

T. Xie and A. E. Hassan: Mining Software Engineering Data

What is Clustering?

» Group data into clusters
— Similar to one another within the same cluster
— Dissimilar to the objects in other clusters
— Unsupervised learning: no predefined classes

Outliers

T. Xie and A. E. Hassan: Mining Software Engineering Data

Clustering and Categorization

« Software categorization
— Partitioning software systems into categories

« Categories predefined — a classification
problem

» Categories discovered automatically — a
clustering problem

T. Xie and A. E. Hassan: Mining Software Engineering Data

Software Categorization - MUDABIue

« Understanding source code

— Use Latent Semantic Analysis (LSA) to find similarity
between software systems

— Use identifiers (e.g., variable names, function names)
as features
« “‘gtk_window” represents some window

* The source code near “gtk_window” contains some GUI
operation on the window

« Extracting categories using frequent identifiers
— “‘gtk_window’, “gtk_main’, and “gpointer’ - GTK
related software system

— Use LSA to find relationships between identifiers
[Kawaguchi et al. 04]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Data Mining Techniques in SE

« Association rules and frequent patterns
 Classification

» Clustering

* Misc.

T. Xie and A. E. Hassan: Mining Software Engineering Data

Other Mining Techniques

» Automaton/grammar/regular expression
learning

« Searching/matching

« Concept analysis
 Template-based analysis

* Abstraction-based analysis

http://ase.csc.ncsu.edu/dmse/miningalgs.html

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://ase.csc.ncsu.edu/dmse/miningalgs.html

How to Do Research In
Mining SE Data

How to do research in mining SE
data

 We discussed results derived from:

— Historical data:
« Source control
« Bug databases
» Mailing lists
— Program data:
* Program source code
* Program execution traces

* We discussed several mining techniques

* We now discuss how to:
— Get access to a particular type of SE data
— Process the SE data for further mining and analysis

T. Xie and A. E. Hassan: Mining Software Engineering Data

Source Control Repositories

Concurrent Versions System (CVS)
Comments

Fewvision 1,141 / (download) - annotate - [select for diffs] | Sheee ol 2 7 4-22-07 2000 0702 (16 months agoe) by fare
CZhanges since 1.140: +14 -8 lines
Diff to prewious 1140

Trmplemented restoring name filter from history

Trmplemented applyving name filter also on new wiews

Changed some methods in KongWiew to make the semantics easier and ta
giwve each one a smaller granularity (openlRL takes location bhar UTRL and
natme filter as well, changeVWViewMods only does what it says, eto.) .

Twp lemented name filtering in the list riews as well.

Only case that doesn't keesep the nagnse filter: manual wiew—mode changes.

Fewvizion 1.140 / (download) - annctate - [select for diffs] | Sad Jwf § F2:537:05 2000 U752 (16 months age) by mewundory
Changes since 1.139: +2 -2 lines
Daff to prewious 1. 1359

—the Mmowe cursor to the file beginning with the pressed char™ feature
of QListWView works now also in the Text VWView Mode (as Dawvid suggested)

Alex

Eewision 1,139 / (download) - annotate - [select for iffs] | Mase Jruse 26 2520027 2000 5P (16 months, 1 weelke age)) by faneres
Changes since 1.138: +5 -3 lines
Duff to prewvicus 1. 138

Fixed copying urls with speciasal chars in the ocliphoasrd (used the wrong Ot method) .

Himan, can't rewember if it's ok to add to & O3trlList a temporary char «
[&2= returned by localSEitc () .dats()l)l 2 It copies the ralus, right 2?2 [(WMorks here. ..

Chen et al. 01] http://cvssearch.sourceforge.net/

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://cvssearch.sourceforge.net/

CVS COmmentS RCS files:/repository/file_h,v

Working file: file.h
head: 1.5

e cvs log —displays description:

for all revisions and |Revision 1.5

its comments for each |cvs comert ...
file

e cvs diIff —shows RCS file: /repository/file.h,v
differences between | .
different versions of a |=2" '™
file . another new Tine
« Used for program
UnderStanding [Chen et al. 01] http://cvssearch.sourceforge.net/

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://cvssearch.sourceforge.net/

Code Version Histories

« CVS provides file versioning

— Group individual per-file changes into individual
transactions: checked in by the same author with the
same check-in comment within a short time window

« CVS manages only files and line numbers
— Associate syntactic entities with line ranges
 Filter out long transactions not corresponding to
meaningful atomic changes
— E.g., features and bug fixes vs. branch merging

» Used to mine co-changed entities
[Hassan& Holt 04, Ying et al. 04]

[Zimmermann et al. 04] htip://www.st.cs.uni-sb.de/softevo/erose/

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://www.st.cs.uni-sb.de/softevo/erose/

Getting Access to Source Control

* These tools are commonly used

— Email: ask for a local copy to avoid taxing the project's
servers during your analysis and development

— CVSup: mirrors a repository if supported by the
particular project

— rsync: a protocol used to mirror data repositories

— CVSsuck:

« Uses the CVS protocol itself to mirror a CVS repository

« The CVS protocol is not designed for mirroring; therefore,
CVSsuck is not efficient

« Use as a last resort to acquire a repository due to its inefficiency
« Used primarily for dead projects

T. Xie and A. E. Hassan: Mining Software Engineering Data

Recovering Information from CVS

Traditional Extractor

Compar apshot Facts

Evolutionary Change Data

T. Xie and A. E. Hassan: Mining Software Engineering Data

Challenges in recovering information
from CVS

main() { helpInfo() { helpInfo(){
Int a; errorString! Int b;
/*call } ¥

help*/ main() { main() {

helpInfo(); int a; Int a;

} [*call [*call

help*/ help*/
\/ helpinfo(): helpinfo():
¥ ¥

V1: \\// V3:
Undefined func. Syntax/érror Valid géde
(Link Error) N\ \

T. Xie and A. E. Hassan: Mining Software Engineering Data

CVS Limitations

* CVS has limited query functionality and is
slow

* CVS does not track co-changes
« CVS tracks only changes at the file level

T. Xie and A. E. Hassan: Mining Software Engineering Data

Inferring Transactions in CVS

» Sliding Window:

— Time window: [3-5mins on average]

* min 3Mins

« as high as 21 mins for merges

« Commit Mails

CVSROOT: /cvs/gcc
Module name: gcc
Changes by: zackQgcc.gnu.org 2004-05-01 19:12:47

Modified files:
gcc/cp . ChangeLog decl.c

Log message:
* decl.c (reshape_init): Do not apply TYPE_DOMAIN to a VECTOR_TYPE.
Instead, dig into the representation type to find the array bound.

Patches:

http://.../cvsweb.cgi/gcc/gcc/cp/Changelog.diff?. . . &r2=1.4042
http://.../cvsweb.cgi/gcc/gec/cp/decl.c.diff?. . . &r2=1.1204

Commit mails for GCC: http://gcc.gnu.org/ml/gcc-cvs/

T. Xie and A. E. Hassan: Mining Software Engineering Data [Zimmermann et al. 2004] 78

Noise in CVS Transactions

* Drop all transactions above a large
threshold

e “Change #include filenames from <foo.h> [sigh] to
<openssl.h>. (652 files, OPENSSL)

e “Change functions to ANSI C.” (491 files, OPENSSL)

* For Branch merges either look at CVS
comments or use heuristic algorithm
proposed by Fischer et al. 2003

Changed files
[AB] [CD] | EF]

Point

O = Commit/Transaction

T. Xie and A. E. Hassan: Mining Software Engineering Data

Noise in detecting developers

* Few developers are given commit privileges

* Actual developer is usually mentioned in the
change message

* One must study project commit policies before
reaching any conclusions

60 T
bryanh ——
momjian -
neile -
50) ; petere =
' : ; scrappy
' tgl -
.. thomas %
w40 ke vadim__..+=7 1
14
= . B
=
=]
5 30
=
(=]
(=8
o
o 20% AL
.'I_I,_,::.:
10 \\\
0 : \.‘* —_— o m - el = n T el i
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

T. Xie and A. E. Hassan: Mining Software Engineering Data [German

Source Control and Bug Repositories

Bugzilla

mozilla.org

Bugzilla Bug 337641

Bug List: (54 of 71} First Last Prev Mext Show |ast search results

dowload doesn't start right away anymore

Search page Enter new bug

Bug#: 3376541 alias:
Product: | Firefox j

Cumgunent:l Download kManager j
Status: MNEW
Resolution:

Assigned To: | pjl|@firefox.org

ﬂardwarE:IF"C 'I

08: | Windows 2000

Yersion: | Trunk,

Prinritg:l—_ll

Seueritg:l horrmal

Target |
Milestone:

QA Cnntac:t:||:|Dwr‘|ll:|ad.manager@ﬁrefux.bUQS

URL: |

§ummarv:|duwnluad doesn't start right away anymore

Status ﬂhitehuard:l

Kegwurds:lregrESSiDn

. Xie and A. E. Hassan: Mining Software Engineering Data

Adapted from Anvik et al.’s slides

82

Sample Bugzilla Bug Report

Last modified: 2006-05-15 022744 FDT

Bugzilla Bug 338009 Browser Crashes at chs.com
Bug List: {15 of 37) First Last Prew Next Show last search results Search page Enter new bug
338002 alias: Hardware:l baciftosh vI Reporter: Mark <mozilla@mark-miller.com:
BugE:] B Add CC:
08:|Mac 05X 10.4 = = :
CC:

Erul:luct:l Bl j Eersiun:l unspecified j

Component: | General x —

I J Prlurltg:l— vI
Status: UMNCOMNFIRMED

Resolution:

Seueritg:l narrmal P |

Mobody's working on this, feel . Iﬂe_tl_ A I . ’?
Assigned To: free to take it Milesie: A‘$S|g ned TO o
znobody@mozilla.org= L

Description: [reply] Opened: 2006-05-15 09:21 POT

Each time I wisit http:/ www.chs.comd, Firefox crashes before the page is .
loaded. I can tell what element of the page is crashing the browser though. Dupllcate?

Beproducikble: ALlways

Steps to Reproduce:
1.0pen Browser (

Z.Enter http://wuw.chs.com’ < LReprOdUCIble?}

J.Press return

i;’;gagtjijgli:lm ol e snebas Bugzilla: open source bug tracking tool
B M http://www.bugzilla.org/
Xipecte 2321 = -

[Anvik et al. 06]

The hrowser doesn't crash.

No other sites so far have displayed tmis 1 NUP:J//www.cS.ubc.ca/labs/spl/projects/bugTriage.html

T. Xie and A. E. Hassan: Mining Software Engineering Data Adapted from Anvik et al.’s slides 83

http://www.bugzilla.org/
http://www.cs.ubc.ca/labs/spl/projects/bugTriage.html

Acquiring Bugzilla data

* Download bug reports using the XML export
feature (in chunks of 100 reports)

* Download attachments (one request per
attachment)

* Download activities for each bug report (one
request per bug report)

T. Xie and A. E. Hassan: Mining Software Engineering Data

Using Bugzilla Data

* Depending on the analysis, you might need to
rollback the fields of each bug report using the
stored changes and activities

 Linking changes to bug reports is more or less
straightforward:
— Any number in a log message could refer to a bug
report
— Usually good to ignore numbers less than 1000. Some

Issue tracking systems (such as JIRA) have identifiers
that are easy to recognize (e.g., JIRA-4223)

T. Xie and A. E. Hassan: Mining Software Engineering Data

So far: Focus on fixes

fixes issues mentioned in bug 45635: [hovering] rollover
hovers
- mouse exit detection is safer and should not allow for
loopholes any more, except for shell deactiviation
- hovers behave like normal ones:
- tooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

Fixes give only the location of a defect,
not when it was introduced.

T. Xie and A. E. Hassan: Mining Software Engineering Data

Bug-introducing changes

BUG-INTRODUCING FIX
if (foo==null) { if (fool=null) {

foo.bar(); foo.bar();

Bug-introducing changes are changes that
lead to problems as indicated by later fixes.

T. Xie and A. E. Hassan: Mining Software Engineering Data

Life-cycle of a "bug”

fixes issues mentioned in bug 45635: [hovering] rollover hovers
- mouse exit detection is safer and should not allow for
loopholes any more, except for shell deactiviation
- hovers behave like normal ones:
- tooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

BUG-INTRODUCING FIX
CHANGE CHANGE

T. Xie and A. E. Hassan: Mining Software Engineering Data

The SZZ algorithm

$ cvs annotate -r 1.17 Foo.java
20: 1.11 (john 12-Feb-03): return i/0;
40: 1.14 (kate 23-May-03): return 42;

60: 1.16 (mary 10-Jun-03): int i=0;

T. Xie and A. E. Hassan: Mining Software Engineering Data

1.1
8

FIXED BUG
42233

The SZZ algorithm

$ cvs annotate -r 1.17 Foo.java

-(john 12-Feb-03): return i/0;
40: 14 (kate 23-May-03): return 42;
-(mary 10-Jun-03): int i=0;

1.1
8

FIXED BUG
42233

T. Xie and A. E. Hassan: Mining Software Engineering Data

The SZZ algorithm

ixes issues mentioned in bug 45635: [hovering] rollover
hovers
- mouse exit detection is safer and should not allow for
loopholes any more, except for shell deactiviation
- hovers behave like normal ones:
- tooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

i1

FIXED BUG
42233

T. Xie and A. E. Hassan: Mining Software Engineering Data

Project Communication — Mailing lists

Acquiring Mailing lists

« Usually archived and available from the
project’s webpage
« Stored in mbox format:

— The mbox file format sequentially lists every
message of a mail folder

T. Xie and A. E. Hassan: Mining Software Engineering Data

Challenges using Mailing lists data |

 Unstructured nature of email makes
extracting information difficult

— Written English

* Multiple emalil addresses
— Must resolve emails to individuals

 Broken discussion threads

— Many email clients do not include “In-Reply-To”
field

T. Xie and A. E. Hassan: Mining Software Engineering Data

Challenges using Mailing lists data Il

« Country information is not accurate

— Many sites are hosted in the US:
* Yahoo.com.ar is hosted in the US
* Tools to process mailbox files rarely scale to
handle such large amount of data (years of
mailing list information)

— Will need to write your own

T. Xie and A. E. Hassan: Mining Software Engineering Data

Program Source Code

Acquiring Source Code

* Ahead-of-time download directly from code
repositories (e.g., Sourceforge.net)
— Advantage: offline perform slow data processing and
mining
— Some tools (Prospector and Strathcona) focus on
framework API code such as Eclipse framework APls

* On-demand search through code search engines:
— E.g., http://www.google.com/codesearch

— Advantage: not limited on a small number of downloaded

code repositories

Prospector: hitp://snobol.cs.berkeley.edu/prospector

Strathcona: http://Ismr.cs.ucalgary.ca/projects/heuristic/strathcona/

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://www.google.com/codesearch
http://snobol.cs.berkeley.edu/prospector
http://lsmr.cs.ucalgary.ca/projects/heuristic/strathcona/

Processing Source Code

« Use one of various static analysis/compiler tools
(McGill Soot, BCEL, Berkeley CIL, GCC, etc.)

« But sometimes downloaded code may not be
compliable

— E.g., use Eclipse JDT http://www.eclipse.org/|dt/ for AST
traversal

— E.g., use exuberant ctags htip://ctags.sourceforge.net/ for
high-level tagging of code
* May use simple heuristics/analysis to deal with
some language features [Xie&Pei 06, Mandelin et al. 05]

— Conditional, loops, inter-procedural, downcast, etc.

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://www.eclipse.org/jdt/
http://ctags.sourceforge.net/

Program Execution Traces

Acquiring Execution Traces

* Code instrumentation or VM instrumentation
— Java: ASM, BCEL, SERP, Soot, Java Debug Interface
— C/C++/Binary: Valgrind, Fjalar, Dyninst

« See Mike Ernst's ASE 05 tutorial on “Learning from
executions: Dynamic analysis for software
engineering and program understanding”

http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-
ase2005-abstract.html

More related tools: http://www.csc.ncsu.edu/faculty/xie/research.htm#related

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://www.csc.ncsu.edu/faculty/xie/research.htm#related

Processing Execution Traces

* Processing types: online (as data is
encountered) vs. offline (write data to file)
* May need to group relevant traces together

— e.g., based on receiver-object references
— e.g., based on corresponding method entry/exit

* Debugging traces: view large log/trace files
with V-file editor: hitp://www.fileviewer.com/

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://www.fileviewer.com/

Tools and Repositories

Repositories Available Online

* Promise repository:
— http://promisedata.org/
Eclipse bug data:

— http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/

MSR Challenge 2007 (data for Mozilla & Eclipse):

— http://msr.uwaterloo.ca/msr2007/challenge/

FLOSSmole:

— http://ossmole.sourceforge.net/

Software-artifact infrastructure repository:
— http://sir.unl.edu/portal/index.html

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://promisedata.org/
http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/
http://msr.uwaterloo.ca/msr2007/challenge/
http://ossmole.sourceforge.net/
http://sir.unl.edu/portal/index.html

Eclipse Bug Data

<defects project=""eclipse™ release =""3.0"">
<package name="org.eclipse.core.runtime™ >
<counts=
<count id=""pre” value=""16" avg="0.609" points="43" max=
<count id=""post” value=""1" avg="0.022" points="43"" max="1
<fcounts>
< compilationunit name="Plugin.java”>
< counts=

B -y
b |

=
ii}

< count id=""post” value="1">
</counts>
</compilationunit >
< compilationunit name="Platform.java™>
< counts™
<count id=""pre” value”1" >
< count id=""post™ value=""0" >
</counts>
</compilationunit >

< [package >

< /defects >

 Defect counts are listed
as counts at the plug-in,
package and
compilationunit levels.

* The value field
contains the actual
number of pre- ("pre")
and post-release defects

("post").

* The average ("avg")
and maximum ("max")
values refer to the
defects found in the
compilation units
("compilationunits").

[Schroter et al. 06] htip://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/

Metrics in the Eclipse Bug Data

Metric File level Package level
methods FOUT Number of method calls (fan out) avg, max, total avg, max, total
MLOC Method lines of code avg, max, total avg, max, total
NBD Nested block depth avg, max, total avg, max, total
PAR Number of parameters avg, max, total avg, max, total
VG McCabe cyclomatic complexity avg, max, total avg, max, total
classes NOF Number of fields avg, max, total avg, max, total
NOM Number of methods avg, max, total avg, max, total
NSF Number of static fields avg, max, total avg, max, total
NSM Number of static methods avg, max, total avg, max, total
files ACD Number of anonymous type declarations value avg, max, total
NOI Number of interfaces value avg, max, total
NOT Number of classes value avg, max, total
TLOC Total lines of code value avg, max, total
packages NOCU Number of files (compilation units) N/A value

T. Xie and A. E. Hassan: Mining Software Engineering Data

Abstract Syntax Tree Nodes

Eclipse Bug Data

* The AST node
Information can be
used to calculate
various metrics

N

AnnotationType Declaration
AnnotationTypeMemberDeclaration
AnonymousClassDeclaration
ArravAccess
ArravCreation
Arravinitializer
ArravType
AssertStatement
Assignment

Biock

BiockComment
BoaoleanLiteral
BreakStatement
CastExpression
CatchClause
CharacterLiteral
ClassinstanceCreation
CompilationUnit
Conditional Expression
Constructorinvocation
ContinieStatement
DaoStatement
EmptyStatement
Enhanced ForStatement
EnumConstantDeclaration
EnumDeclaration
ExpressionStatement
FieldAccess
FieldDeclaration
ForStatement
[fStatement
ImportDeclaration
InfixExpression
Initializer
InstanceofExpression
Javadoc
LabeledStatement
LineComment
MarkerAnnotation
MemberRef
MemberValue Pair
MethodDeclaration

Methodlnvocation
MethodRef
MethodRefParameter
Modifier
NormalAnnotation
NullLiteral

NumberLiteral
PackageDeclaration
ParameterizedType
ParenthesizedExpression
PostfixExpression
PrefixExpression
PrimitiveType
QualifiedName
QualifiedType
ReturnStatement
SimpleName

SimpleType
SingleMemberAnnotation
SingleVariableDeclaration
StringLiteral
SuperConstructorfnvocation
SuperFieldAccess
SuperMethodlnvocation
SwitchCase
SwitchStatement
SyachronizedStatement
TagElement

TextElement
ThisExpression
ThrowStatement
TryStatement
TypeDeclaration
TypeDeclarationStatement
TypeLiteral
TypeParameter
Variable DeclarationExpression
Variable Declaration Fragment
Variable DeclarationStatement
WihileStatement
WildcardTvpe

T. Xie and A. E. Hassan: Mining Software Engineering Data

FLOSSmole d

« FLOSSmole

— provides raw data about open source projects

— provides summary reports about open source projects
— integrates donated data from other research teams

— provides tools so you can gather your own data

 Data sources
— Sourceforge
— Freshmeat
— Rubyforge
— ObjectWeb
— Free Software Foundation (FSF)
— SourceKibitzer

http://ossmole.sourceforge.net/

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://ossmole.sourceforge.net/

Example Graphs from FlossMole

Frogrannming Languags Grawth Oct"04=lan'05

Smalltalk
Forth |
Eiffel |
Visual Basic .NET _|
Ada |
Prolog
Zope |

Cold Fusion
Fortran |
Scheme |
Object Pascal |
Lisp |

Pascal
Ruby |

ASP |

Objective C |
Tel

PL/SQL |

Data Collections
O October 2004
M January 2005

Assembly |
Unix Shell |
Delphifkylix
Visual Basic |
JavaScript
c# |
Python |
Perl | =
PHP |
Java | —
c]]
C++ |

T

T T T T T 1
0 2000 4000 6000 000 10000 12000 14000 16000

License Types, January 2005

[GNU General Public License (GPL)

B GNU Library or Lesser General Public License (LGPL)
[0 BSD License

O Public Domain

W Artistic License

O MIT License

W Apache Software License

O Other/Proprietary License

M Mozilla Public License 1.1 (MPL 1.1)
B OSl-Approved Open Source

O commoan Public License

O &pache License V2.0

M zlib/libpng License

W Open Software License

B Mozilla Public License 1.0 (MPL)

M Academic Free License (AFL)

[Qt Public License (QPL)

O Python License (CNRI Python License)
O Python Software Foundation License

T. Xie and A. E. Hassan: Mining Software Engineering Data

Analysis Tools

e R
— http://lwww.r-project.org/
— R is a free software environment for statistical computing
and graphics
« Aisee
— http://lwww.aisee.com/
— Aisee is a graph layout software for very large graphs

« WEKA

— http://www.cs.waikato.ac.nz/ml/weka/

— WEKA contains a collection of machine learning
algorithms for data mining tasks

e More tools: http://ase.csc.ncsu.edu/dmse/resources.html

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://www.r-project.org/
http://www.aisee.com/
http://www.cs.waikato.ac.nz/ml/weka/
http://ase.csc.ncsu.edu/dmse/resources.html

Data Extraction/Processing Tools

 Kenyon
— http://dforge.cse.ucsc.edu/projects/kenyon/

* Mylar (comes with API for Bugzilla and
JIRA)

— http://www.eclipse.org/mylar/

 Libresoft toolset

— Tools (cvsanaly/mlstats/detras) for recovering
data from cvs/svn and mailinglists

— http://forge.morfeo-project.org/projects/libresoft-
tools/

T. Xie and A. E. Hassan: Mining Software Engineering Data

http://dforge.cse.ucsc.edu/projects/kenyon/
http://www.eclipse.org/mylar/
http://forge.morfeo-project.org/projects/libresoft-tools/
http://forge.morfeo-project.org/projects/libresoft-tools/

Kenyon

4 A

Extract Compute Save Analyze
Automated Fact extraction Persist gathered Query DB,
configuration (metrics, static metrics & facts add new
— extraction analysis) — facts
N N
S Kenyon Analysis
A I — ——— > | Repository | K——>| Software
: (RDBMS/
Repository Hibernate)

t/ Filesystem W

[Adapted from Bevan et al. 05]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Publishing Advice

« Report the statistical significance of your results:

— Get a statistics book (one for social scientist, not for
mathematicians)

« Discuss any limitations of your findings based on
the characteristics of the studied repositories:

— Make sure you manually examine the repositories. Do
not fully automate the process!

— Use random sampling to resolve issues about data noise

* Relevant conferences/workshops:
— main SE conferences, ICSM, MSR, WODA, ...

T. Xie and A. E. Hassan: Mining Software Engineering Data

Mining Software Repositories

* Very active research area in SE:

— MSR is one of the most attended ICSE
workshops in last 4 years (MSR 2006: sold out)

— Special Issue of IEEE TSE on MSR:
* 15 % of all submissions of TSE in 2004
» Fastest review cycle in TSE history: 8 months

— Special Issue of Journal of Empirical Software
Engineering (late 2007/2008)

5, MSR2004 o MSR2005 o MSR2006 o MSK 2007

A st Al S Al
i g Mining Software Repositories v g Mining Software Re positories s > Mining Software Repo

ries 2B &% Mining Software Repositories

T. Xie and A. E. Hassan: Mining Software Engineering Data

Q&A

Mining Software Engineering Data Bibliography
http://ase.csc.ncsu.edu/dmse/
\What software engineering tasks can be helped by data mining?

*\What kinds of software engineering data can be mined?
*How are data mining technigues used in software engineering?

*Resources

http://ase.csc.ncsu.edu/dmse/
http://ase.csc.ncsu.edu/dmse/setasks.html
http://ase.csc.ncsu.edu/dmse/sedata.html
http://ase.csc.ncsu.edu/dmse/miningalgs.html
http://ase.csc.ncsu.edu/dmse/resources.html

Example Tools

« MAPO: mining API| usages from open source
repositories [Xie&Pei 06]

 DynaMine: mining error/usage patterns from
code revision histories [Livshits&Zimmermann 05]

 BugTriage: learning bug assignments from
historical bug reports [Anvik et al. 06]

T. Xie and A. E. Hassan: Mining Software Engineering Data

Demand-Driven Or Not

Any-gold Demand-driven
mining mining
Examples | DynaMine, ... MAPO, BugTriage, ...

Advantages | Surface up only cases |Exploit demands to filter
that are applicable out irrelevant information

Issues How much gold is How high percentage of
good enough given the | cases would work well?
amount of data to be
mined?

T. Xie and A. E. Hassan: Mining Software Engineering Data

Code vs. Non-Code

Code/ Non-Code/
Programming Langs Natural Langs
Examples | MAPO, DynaMine, ... |BugTriage, CVS/Code

comments, emails, docs

Advantages | Relatively stable and | Common source of

consistent capturing programmers’
representation intentions
Issues What project/context-

specific heuristics to use?

T. Xie and A. E. Hassan: Mining Software Engineering Data

Static vs. Dynamic

Static Data: code Dynamic Data: prog
bases, change histories | states, structural profiles
Examples | MAPO, DynaMine, ... |Spec discovery, ...

Advantages | No need to set up exec | More-precise info
environment;

More scalable

Issues How to reduce false How to reduce false
positives? negatives?

Where tests come from?

T. Xie and A. E. Hassan: Mining Software Engineering Data

Shapshot vs. Changes

Code snapshot Code change history
Examples | MAPO, ... DynaMine, ...
Advantages | arger amount of Revision transactions
available data encode more-focused
entity relationships
Issues How to group CVS
changes into transactions?

T. Xie and A. E. Hassan: Mining Software Engineering Data

Characteristics in Mining SE Data

* Improve quality of source data: data preprocessing
— MAPO: inlining, reduction
— DynaMine: call association
— BugTriage: labeling heuristics, inactive-developer removal
* Reduce uninteresting patterns: pattern postprocessing
— MAPO: compression, reduction
— DynaMine: dynamic validation
« Source data may not be sufficient
— DynaMine: revision histories
— BugTriage: historical bug reports

SE-Domain-Specific Heuristics are important

T. Xie and A. E. Hassan: Mining Software Engineering Data

	Mining Software Engineering Data
	Tao Xie
	Ahmed E. Hassan
	Acknowledgments
	Tutorial Goals
	Mining SE Data
	Mining SE Data
	Overview of Mining SE Data
	Tutorial Outline
	Types of SE Data
	Historical Data
	Historical Data
	Percentage of Project Costs Devoted to Maintenance
	Survey of Software Maintenance Activities
	Source Control Repositories
	Source Control Repositories
	Change Propagation
	Measuring Change Propagation
	Guiding Change Propagation
	Code Sticky Notes
	Conceptual & Concrete Architecture�(NetBSD)
	Investigating Unexpected Dependencies Using Historical Code Changes
	Studying Conway’s Law
	Linux: Conceptual, Ownership, Concrete
	Source Control and Bug Repositories
	Predicting Bugs
	Using Imports in Eclipse to Predict Bugs
	Classifying Changes as Buggy or Clean
	Project Communication – Mailing lists
	Project Communication (Mailinglists)	
	Social Network Analysis
	Immigration Rate of Developers
	The Patch Review Process
	Measure a team’s morale around release time?
	Program Source Code
	Code Entities
	Mining API Usage Patterns
	Relationships btw Code Entities
	Program Execution Traces
	Method-Entry/Exit States
	Other Profiled Program States
	Executed Structural Entities
	Q&A and break
	Part I Review
	Data Mining Techniques in SE
	Data Mining Techniques in SE
	Frequent Itemsets
	Association Rules
	A Simple Case
	Conflicting Patterns
	Detect Copy-Paste Code
	Find Bugs in Copy-Pasted Segments
	Mining Rules in Traces
	Mining Emerging Patterns in Traces
	Data Mining Techniques in SE
	Classification: A 2-step Process
	Model Construction
	Model Application
	Supervised vs. Unsupervised Learning
	GUI-Application Stabilizer
	Data Mining Techniques in SE
	What is Clustering?
	Clustering and Categorization
	Software Categorization - MUDABlue
	Data Mining Techniques in SE
	Other Mining Techniques
	How to Do Research in �Mining SE Data
	How to do research in mining SE data
	Source Control Repositories
	Concurrent Versions System (CVS) Comments
	CVS Comments
	Code Version Histories
	Getting Access to Source Control
	Recovering Information from CVS
	Challenges in recovering information from CVS
	CVS Limitations
	Inferring Transactions in CVS
	Noise in CVS Transactions
	Noise in detecting developers
	Source Control and Bug Repositories
	Bugzilla
	Sample Bugzilla Bug Report
	Acquiring Bugzilla data
	Using Bugzilla Data
	So far: Focus on fixes
	Bug-introducing changes
	Life-cycle of a “bug”
	The SZZ algorithm
	The SZZ algorithm
	The SZZ algorithm
	Project Communication – Mailing lists
	Acquiring Mailing lists	
	Challenges using Mailing lists data I
	Challenges using Mailing lists data II
	Program Source Code
	Acquiring Source Code
	Processing Source Code
	Program Execution Traces
	Acquiring Execution Traces
	Processing Execution Traces
	Tools and Repositories
	Repositories Available Online
	Eclipse Bug Data
	Metrics in the Eclipse Bug Data
	Abstract Syntax Tree Nodes in Eclipse Bug Data
	FLOSSmole
	Example Graphs from FlossMole
	Analysis Tools
	Data Extraction/Processing Tools
	Kenyon
	Publishing Advice
	Mining Software Repositories
	Q&A
	Example Tools
	Demand-Driven Or Not
	Code vs. Non-Code
	Static vs. Dynamic
	Snapshot vs. Changes
	Characteristics in Mining SE Data

