
Mining Software Engineering Data

Tao Xie
North Carolina State University
www.csc.ncsu.edu/faculty/xie

xie@csc.ncsu.edu

Ahmed E. Hassan
University of Victoria

www.ece.uvic.ca/~ahmed
ahmed@uvic.ca

An up-to-date version of this tutorial is available at
http://ase.csc.ncsu.edu/dmse/dmse-icse07-tutorial.pdf

Some slides are adapted from KDD 06 tutorial slides co-
prepared by Jian Pei from Simon Fraser University, Canada

mailto:ahmed@uvic.ca
mailto:xie@csc.ncsu.edu
http://ase.csc.ncsu.edu/dmse/dmse-icse07-tutorial.pdf

T. Xie and A. E. Hassan: Mining Software Engineering Data 2

Tao Xie

• Assistant Professor at North Carolina State
University, USA

• Leads the ASE research group at NCSU
• Co-presented a tutorial on “Data Mining for

Software Engineering” at KDD 2006
• Co-organizer of Dagstuhl Seminar on

“Mining Programs and Processes” 2007

T. Xie and A. E. Hassan: Mining Software Engineering Data 3

Ahmed E. Hassan

• Assistant Professor at the University of
Victoria, Canada

• Leads the SAIL research group at UVic
• Co-chair for Workshop on Mining Software

Repositories (MSR) from 2004-2006
• Chair of the steering committee for MSR

T. Xie and A. E. Hassan: Mining Software Engineering Data 4

Acknowledgments

• Jian Pei, SFU
• Thomas Zimmermann, Saarland U
• Peter Rigby, UVic
• Sunghun Kim, MIT
• John Anvik, UBC

T. Xie and A. E. Hassan: Mining Software Engineering Data 5

Tutorial Goals

• Learn about:
– Recent and notable research and researchers in mining

SE data
– Data mining and data processing techniques and how to

apply them to SE data
– Risks in using SE data due to e.g., noise, project culture

• By end of tutorial, you should be able:
– Retrieve SE data
– Prepare SE data for mining
– Mine interesting information from SE data

T. Xie and A. E. Hassan: Mining Software Engineering Data 6

Mining SE Data

• MAIN GOAL
– Transform static record-

keeping SE data to active
data

– Make SE data actionable
by uncovering hidden
patterns and trends

MailingsBugzilla

Code
repository

Execution
tracesCVS

T. Xie and A. E. Hassan: Mining Software Engineering Data 7

Mining SE Data

• SE data can be used to:
– Gain empirically-based understanding of

software development
– Predict, plan, and understand various aspects

of a project
– Support future development and project

management activities

T. Xie and A. E. Hassan: Mining Software Engineering Data 8

Overview of Mining SE Data

code
bases

change
history

program
states

structural
entities

software engineering data

bug
reports

programming defect detection testing debugging maintenance

software engineering tasks helped by data mining

classification association/
patterns clustering

data mining techniques

…

…

…

T. Xie and A. E. Hassan: Mining Software Engineering Data 9

Tutorial Outline

• Part I: What can you learn from SE data?
– A sample of notable recent findings for different

SE data types

• Part II: How can you mine SE data?
– Overview of data mining techniques
– Overview of SE data processing tools and

techniques

T. Xie and A. E. Hassan: Mining Software Engineering Data 10

Types of SE Data

• Historical data
– Version or source control: cvs, subversion, perforce
– Bug systems: bugzilla, GNATS, JIRA
– Mailing lists: mbox

• Multi-run and multi-site data
– Execution traces
– Deployment logs

• Source code data
– Source code repositories: sourceforge.net

T. Xie and A. E. Hassan: Mining Software Engineering Data 11

Historical Data

“History is a guide to navigation in
perilous times. History is who we are
and why we are the way we are.”

- David C. McCullough

T. Xie and A. E. Hassan: Mining Software Engineering Data 12

Historical Data

• Track the evolution of a software project:
– source control systems store changes to the code
– defect tracking systems follow the resolution of defects
– archived project communications record rationale for

decisions throughout the life of a project
• Used primarily for record-keeping activities:

– checking the status of a bug
– retrieving old code

T. Xie and A. E. Hassan: Mining Software Engineering Data 13

Percentage of Project Costs
Devoted to Maintenance

60
65
70
75
80
85
90
95

100

1975 1980 1985 1990 1995 2000 2005

Zelkowitz 79

Lientz & Swanson 81

McKee 1984

Port 98 Huff 90

Moad 90

Eastwood 93

Erlikh 00

T. Xie and A. E. Hassan: Mining Software Engineering Data 14

Survey of Software Maintenance
Activities

• Perfective: add new functionality
• Corrective: fix faults
• Adaptive: new file formats, refactoring

17.4
60.3

18.2

56.739.0

2.2

Lientz, Swanson, Tomhkins [1978]
Nosek, Palvia [1990]

MIS Survey

Schach, Jin, Yu, Heller, Offutt [2003]
Mining ChangeLogs
(Linux, GCC, RTP)

Source Control Repositories

T. Xie and A. E. Hassan: Mining Software Engineering Data 16

Source Control Repositories

• A source control system
tracks changes to
ChangeUnits

• Example of ChangeUnits:
– File (most common)
– Function
– Dependency (e.g., Call)

• Each ChangeUnit:
– It tracks the developer,

time, change message, co-
changing Units

ChangeListDeveloper

Time

ChangeChangeUnit

Modify

Add

Remove

Change
Type

* .. *

ChangeList
Message

FI

FR

GM

ChangeList
Type

T. Xie and A. E. Hassan: Mining Software Engineering Data 17

Change Propagation

Determine
Initial Entity
To Change

Change
Entity

Determine
Other Entities

To Change

Consult
Guru for
Advice

New Req., Bug Fix “How does a change in one source code
entity propagate to other entities?”

No More
Changes

For Each Entity

Suggested Entity

T. Xie and A. E. Hassan: Mining Software Engineering Data 18

Measuring Change Propagation

• We want:
– High Precision to avoid wasting time
– High Recall to avoid bugs

entities changed
changed whichentities predictedRecall =

entities predicted
changed whichentities predictedPrecision =

T. Xie and A. E. Hassan: Mining Software Engineering Data 19

Guiding Change Propagation

• Mine association rules from change history
• Use rules to help propagate changes:

– Recall as high as 44%
– Precision around 30%

• High precision and recall reached in < 1mth
• Prediction accuracy improves prior to a

release (i.e., during maintenance phase)

[Zimmermann et al. 05]

T. Xie and A. E. Hassan: Mining Software Engineering Data 20

Code Sticky Notes

• Traditional dependency graphs and program
understanding models usually do not use
historical information

• Static dependencies capture only a static
view of a system – not enough detail!

• Development history can help understand
the current structure (architecture) of a
software system

[Hassan & Holt 04]

T. Xie and A. E. Hassan: Mining Software Engineering Data 21

Conceptual & Concrete Architecture
(NetBSD)

Hardware
Trans.

Kernel Fault
Handler

Pager

FileSystemVirtual Addr.
Maint. VM Policy

Subsystem

Depend DivergenceHardware
Trans.

Kernel Fault
Handler

Pager

FileSystemVirtual Addr.
Maint. VM Policy

Convergence

Subsystem

Why? Who?
When? Where?

Concrete (reality)Conceptual (proposed)

T. Xie and A. E. Hassan: Mining Software Engineering Data 22

Investigating Unexpected Dependencies
Using Historical Code Changes

• Eight unexpected dependencies
• All except two dependencies existed since day one:

– Virtual Address Maintenance Pager

– Pager Hardware Translations

Which? vm_map_entry_create (in src/sys/vm/Attic/vm_map.c)
depends on pager_map (in /src/sys/uvm/uvm_pager.c)

Who? cgd

When? 1993/04/09 15:54:59
Revision 1.2 of src/sys/vm/Attic/vm_map.c

Why?

from sean eric fagan:
it seems to keep the vm system from deadlocking the
system when it runs out of swap + physical memory.
prevents the system from giving the last page(s) to
anything but the referenced "processes" (especially
important is the pager process, which should never
have to wait for a free page).

T. Xie and A. E. Hassan: Mining Software Engineering Data 23

Studying Conway’s Law

• Conway’s Law:
“The structure of a software system is a direct

reflection of the structure of the development
team”

[Bowman et al. 99]

T. Xie and A. E. Hassan: Mining Software Engineering Data 24

Linux: Conceptual, Ownership,
Concrete

Conceptual
Architecture

Ownership
Architecture

Concrete
Architecture

Source Control and Bug Repositories

T. Xie and A. E. Hassan: Mining Software Engineering Data 26

Predicting Bugs
• Studies have shown that most complexity metrics

correlate well with LOC!
– Graves et al. 2000 on commercial systems
– Herraiz et al. 2007 on open source systems

• Noteworthy findings:
– Previous bugs are good predictor of future bugs
– The more a file changes, the more likely it will have

bugs in it
– Recent changes affect more the bug potential of a file

over older changes (weighted time damp models)
– Number of developers is of little help in predicting bugs
– Hard to generalize bug predictors across projects

unless in similar domains [Nagappan, Ball et al. 2006]

T. Xie and A. E. Hassan: Mining Software Engineering Data 27

Using Imports in Eclipse to Predict
Bugs

import org.eclipse.jdt.internal.compiler.lookup.*;
import org.eclipse.jdt.internal.compiler.*;
import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.util.*;
...
import org.eclipse.pde.core.*;
import org.eclipse.jface.wizard.*;
import org.eclipse.ui.*;

14% of all files that import 14% of all files that import uiui packages, packages,
had to be fixed later on.had to be fixed later on.

71% of files that import 71% of files that import compilercompiler packages, packages,
had to be fixed later on.had to be fixed later on.

[Schröter et al. 06]

T. Xie and A. E. Hassan: Mining Software Engineering Data 28

Percentage of bug-introducing changes for eclipse
[Zimmermann et al. 05]

Don’t program on Fridays ;-)

T. Xie and A. E. Hassan: Mining Software Engineering Data 29

Classifying Changes as Buggy or
Clean
• Given a change can we warn a developer

that there is a bug in it?
– Recall/Precision in 50-60% range

[Sung et al. 06]

Project Communication – Mailing lists

T. Xie and A. E. Hassan: Mining Software Engineering Data 31

Project Communication (Mailinglists)

• Most open source projects communicate
through mailing lists or IRC channels

• Rich source of information about the inner
workings of large projects

• Discussion cover topics such as future
plans, design decisions, project policies,
code or patch reviews

• Social network analysis could be performed
on discussion threads

T. Xie and A. E. Hassan: Mining Software Engineering Data 32

Social Network Analysis

• Mailing list activity:
– strongly correlates with code

change activity
– moderately correlates with

document change activity
• Social network measures (in-

degree, out-degree,
betweenness) indicate that
committers play much more
significant roles in the mailing
list community than non-
committers [Bird et al. 06]

T. Xie and A. E. Hassan: Mining Software Engineering Data 33

Immigration Rate of Developers

• When will a developer be invited to join a
project?
– Expertise vs. interest

[Bird et al. 07]

T. Xie and A. E. Hassan: Mining Software Engineering Data 34

The Patch Review Process

• Two review styles
– RTC: Review-then-commit
– CTR: Commit-then-review

• 80% patches reviewed
within 3.5 days and 50%
reviewed in <19 hrs

[Rigby et al. 06]

T. Xie and A. E. Hassan: Mining Software Engineering Data 35

Measure a team’s morale around
release time?

• Study the content of messages before and after a release
• Use dimensions from a psychometric text analysis tool:

– After Apache 1.3 release there was a drop in optimism
– After Apache 2.0 release there was an increase in sociability

[Rigby & Hassan 07]

Program Source Code

T. Xie and A. E. Hassan: Mining Software Engineering Data 37

Code Entities

Source data Mined info

Variable names and function names Software categories
[Kawaguchi et al. 04]

Statement seq in a basic block Copy-paste code
[Li et al. 04]

Set of functions, variables, and data
types within a C function

Programming rules
[Li&Zhou 05]

Sequence of methods within a Java
method

API usages
[Xie&Pei 05]

API method signatures API Jungloids
[Mandelin et al. 05]

T. Xie and A. E. Hassan: Mining Software Engineering Data 38

Mining API Usage Patterns
• How should an API be used correctly?

– An API may serve multiple functionalities
– Different styles of API usage

• “I know what type of object I need, but I don’t know
how to write the code to get the object” [Mandelin
et al. 05]
– Can we synthesize jungloid code fragments

automatically?
– Given a simple query describing the desired code in

terms of input and output types, return a code segment
• “I know what method call I need, but I don’t know

how to write code before and after this method
call” [Xie&Pei 06]

T. Xie and A. E. Hassan: Mining Software Engineering Data 39

Relationships btw Code Entities

• Mine framework reuse patterns [Michail 00]
– Membership relationships

• A class contains membership functions
– Reuse relationships

• Class inheritance/ instantiation
• Function invocations/overriding

• Mine software plagiarism [Liu et al. 06]
– Program dependence graphs

[Michail 99/00] http://codeweb.sourceforge.net/ for C++

http://codeweb.sourceforge.net/

Program Execution Traces

T. Xie and A. E. Hassan: Mining Software Engineering Data 41

Method-Entry/Exit States
• Goal: mine specifications (pre/post conditions) or

object behavior (object transition diagrams)
• State of an object

– Values of transitively reachable fields
• Method-entry state

– Receiver-object state, method argument values
• Method-exit state

– Receiver-object state, updated method argument
values, method return value

[Ernst et al. 02] http://pag.csail.mit.edu/daikon/
[Xie&Notkin 04/05][Dallmeier et al. 06] http://www.st.cs.uni-sb.de/models/

http://pag.csail.mit.edu/daikon/
http://www.st.cs.uni-sb.de/models/

T. Xie and A. E. Hassan: Mining Software Engineering Data 42

Other Profiled Program States

• Goal: detect or locate bugs
• Values of variables at certain code locations

[Hangal&Lam 02]
– Object/static field read/write
– Method-call arguments
– Method returns

• Sampled predicates on values of variables
[Liblit et al. 03/05][Liu et al. 05]

[Hangal&Lam 02] http://diduce.sourceforge.net/
[Liblit et al. 03/05] http://www.cs.wisc.edu/cbi/

[Liu et al. 05] http://www.ews.uiuc.edu/~chaoliu/sober.htm

http://diduce.sourceforge.net/
http://www.cs.wisc.edu/cbi/
http://www.ews.uiuc.edu/~chaoliu/sober.htm

T. Xie and A. E. Hassan: Mining Software Engineering Data 43

Executed Structural Entities

• Goal: locate bugs
• Executed branches/paths, def-use pairs
• Executed function/method calls

– Group methods invoked on the same object
• Profiling options

– Execution hit vs. count
– Execution order (sequences)

[Dallmeier et al. 05] http://www.st.cs.uni-sb.de/ample/
More related tools: http://www.csc.ncsu.edu/faculty/xie/research.htm#related

http://www.st.cs.uni-sb.de/ample/
http://www.csc.ncsu.edu/faculty/xie/research.htm#related

Q&A and break

T. Xie and A. E. Hassan: Mining Software Engineering Data 45

Part I Review

• We presented notable results based on
mining SE data such as:
– Historical data:

• Source control: predict co-changes
• Bug databases: predict bug likelihood
• Mailing lists: gauge team morale around release time

– Other data:
• Program source code: mine API usage patterns
• Program execution traces: mine specs, detect or

locate bugs

Data Mining Techniques in SE

Part II: How can you mine SE data?
–Overview of data mining techniques
–Overview of SE data processing tools and
techniques

T. Xie and A. E. Hassan: Mining Software Engineering Data 47

Data Mining Techniques in SE

• Association rules and frequent patterns
• Classification
• Clustering
• Misc.

T. Xie and A. E. Hassan: Mining Software Engineering Data 48

Frequent Itemsets

• Itemset: a set of items
– E.g., acm={a, c, m}

• Support of itemsets
– Sup(acm)=3

• Given min_sup = 3, acm
is a frequent pattern

• Frequent pattern mining:
find all frequent patterns
in a database

TID Items bought
100 f, a, c, d, g, I, m, p
200 a, b, c, f, l, m, o
300 b, f, h, j, o
400 b, c, k, s, p
500 a, f, c, e, l, p, m, n

Transaction database TDB

T. Xie and A. E. Hassan: Mining Software Engineering Data 49

Association Rules

• (Time∈{Fri, Sat}) ∧ buy(X, diaper) buy(X,
beer)
– Dads taking care of babies in weekends drink

beer
• Itemsets should be frequent

– It can be applied extensively
• Rules should be confident

– With strong prediction capability

T. Xie and A. E. Hassan: Mining Software Engineering Data 50

A Simple Case

• Finding highly correlated method call pairs
• Confidence of pairs helps

– Conf(<a,b>)=support(<a,b>)/support(<a,a>)
• Check the revisions (fixes to bugs), find the

pairs of method calls whose confidences
have improved dramatically by frequent
added fixes
– Those are the matching method call pairs that

may often be violated by programmers
[Livshits&Zimmermann 05]

T. Xie and A. E. Hassan: Mining Software Engineering Data 51

Conflicting Patterns

• 999 out of 1000 times spin_lock is
followed by spin_unlock
– The single time that spin_unlock does not

follow may likely be an error
• We can detect an error without knowing the

correctness rules

[Li&Zhou 05, Livshits&Zimmermann 05, Yang et al. 06]

T. Xie and A. E. Hassan: Mining Software Engineering Data 52

Detect Copy-Paste Code

• Apply closed sequential pattern mining techniques
• Customizing the techniques

– A copy-paste segment typically does not have big gaps
– use a maximum gap threshold to control

– Output the instances of patterns (i.e., the copy-pasted
code segments) instead of the patterns

– Use small copy-pasted segments to form larger ones
– Prune false positives: tiny segments, unmappable

segments, overlapping segments, and segments with
large gaps

[Li et al. 04]

T. Xie and A. E. Hassan: Mining Software Engineering Data 53

Find Bugs in Copy-Pasted Segments

• For two copy-pasted segments, are the
modifications consistent?
– Identifier a in segment S1 is changed to b in

segment S2 3 times, but remains unchanged
once – likely a bug

– The heuristic may not be correct all the time
• The lower the unchanged rate of an

identifier, the more likely there is a bug

[Li et al. 04]

T. Xie and A. E. Hassan: Mining Software Engineering Data 54

Mining Rules in Traces

• Mine association rules or sequential
patterns S F, where S is a statement and
F is the status of program failure

• The higher the confidence, the more likely S
is faulty or related to a fault

• Using only one statement at the left side of
the rule can be misleading, since a fault may
be led by a combination of statements
– Frequent patterns can be used to improve

[Denmat et al. 05]

T. Xie and A. E. Hassan: Mining Software Engineering Data 55

Mining Emerging Patterns in Traces

• A method executed only in failing runs is
likely to point to the defect
– Comparing the coverage of passing and failing

program runs helps
• Mining patterns frequent in failing program

runs but infrequent in passing program runs
– Sequential patterns may be used

[Dallmeier et al. 05, Denmat et al. 05]

T. Xie and A. E. Hassan: Mining Software Engineering Data 56

Data Mining Techniques in SE

• Association rules and frequent patterns
• Classification
• Clustering
• Misc.

T. Xie and A. E. Hassan: Mining Software Engineering Data 57

Classification: A 2-step Process

• Model construction: describe a set of
predetermined classes
– Training dataset: tuples for model construction

• Each tuple/sample belongs to a predefined class

– Classification rules, decision trees, or math formulae
• Model application: classify unseen objects

– Estimate accuracy of the model using an independent
test set

– Acceptable accuracy apply the model to classify
tuples with unknown class labels

T. Xie and A. E. Hassan: Mining Software Engineering Data 58

Model Construction

Training
Data

Classification
Algorithms

IF rank = ‘professor’
OR years > 6
THEN tenured = ‘yes’

Classifier
(Model)

Name Rank Years Tenured
Mike Ass. Prof 3 No
Mary Ass. Prof 7 Yes
Bill Prof 2 Yes
Jim Asso. Prof 7 Yes

Dave Ass. Prof 6 No
Anne Asso. Prof 3 No

T. Xie and A. E. Hassan: Mining Software Engineering Data 59

Model Application

Classifier

Testing
Data Unseen Data

(Jeff, Professor, 4)

Tenured?
Name Rank Years Tenured
Tom Ass. Prof 2 No

Merlisa Asso. Prof 7 No
George Prof 5 Yes
Joseph Ass. Prof 7 Yes

T. Xie and A. E. Hassan: Mining Software Engineering Data 60

Supervised vs. Unsupervised
Learning
• Supervised learning (classification)

– Supervision: objects in the training data set
have labels

– New data is classified based on the training set
• Unsupervised learning (clustering)

– The class labels of training data are unknown
– Given a set of measurements, observations,

etc. with the aim of establishing the existence of
classes or clusters in the data

T. Xie and A. E. Hassan: Mining Software Engineering Data 61

GUI-Application Stabilizer

• Given a program state S and an event e, predict
whether e likely results in a bug
– Positive samples: past bugs
– Negative samples: “not bug” reports

• A k-NN based approach
– Consider the k closest cases reported before
– Compare Σ 1/d for bug cases and not-bug cases, where

d is the similarity between the current state and the
reported states

– If the current state is more similar to bugs, predict a bug
[Michail&Xie 05]

T. Xie and A. E. Hassan: Mining Software Engineering Data 62

Data Mining Techniques in SE

• Association rules and frequent patterns
• Classification
• Clustering
• Misc.

T. Xie and A. E. Hassan: Mining Software Engineering Data 63

What is Clustering?

• Group data into clusters
– Similar to one another within the same cluster
– Dissimilar to the objects in other clusters
– Unsupervised learning: no predefined classes

Cluster 1
Cluster 2

Outliers

T. Xie and A. E. Hassan: Mining Software Engineering Data 64

Clustering and Categorization

• Software categorization
– Partitioning software systems into categories

• Categories predefined – a classification
problem

• Categories discovered automatically – a
clustering problem

T. Xie and A. E. Hassan: Mining Software Engineering Data 65

Software Categorization - MUDABlue

• Understanding source code
– Use Latent Semantic Analysis (LSA) to find similarity

between software systems
– Use identifiers (e.g., variable names, function names)

as features
• “gtk_window” represents some window
• The source code near “gtk_window” contains some GUI

operation on the window

• Extracting categories using frequent identifiers
– “gtk_window”, “gtk_main”, and “gpointer” GTK

related software system
– Use LSA to find relationships between identifiers

[Kawaguchi et al. 04]

T. Xie and A. E. Hassan: Mining Software Engineering Data 66

Data Mining Techniques in SE

• Association rules and frequent patterns
• Classification
• Clustering
• Misc.

T. Xie and A. E. Hassan: Mining Software Engineering Data 67

Other Mining Techniques

• Automaton/grammar/regular expression
learning

• Searching/matching
• Concept analysis
• Template-based analysis
• Abstraction-based analysis

http://ase.csc.ncsu.edu/dmse/miningalgs.html

http://ase.csc.ncsu.edu/dmse/miningalgs.html

How to Do Research in
Mining SE Data

T. Xie and A. E. Hassan: Mining Software Engineering Data 69

How to do research in mining SE
data
• We discussed results derived from:

– Historical data:
• Source control
• Bug databases
• Mailing lists

– Program data:
• Program source code
• Program execution traces

• We discussed several mining techniques
• We now discuss how to:

– Get access to a particular type of SE data
– Process the SE data for further mining and analysis

Source Control Repositories

T. Xie and A. E. Hassan: Mining Software Engineering Data 71

Concurrent Versions System (CVS)
Comments

[Chen et al. 01] http://cvssearch.sourceforge.net/

http://cvssearch.sourceforge.net/

T. Xie and A. E. Hassan: Mining Software Engineering Data 72

CVS Comments

• cvs log – displays
for all revisions and
its comments for each
file

• cvs diff – shows
differences between
different versions of a
file

• Used for program
understanding

RCS files:/repository/file.h,v
Working file: file.h
head: 1.5
...
description:

Revision 1.5
Date: ...
cvs comment ...

...

…
RCS file: /repository/file.h,v
…
9c9,10
< old line

> new line
> another new line

[Chen et al. 01] http://cvssearch.sourceforge.net/

http://cvssearch.sourceforge.net/

T. Xie and A. E. Hassan: Mining Software Engineering Data 73

Code Version Histories
• CVS provides file versioning

– Group individual per-file changes into individual
transactions: checked in by the same author with the
same check-in comment within a short time window

• CVS manages only files and line numbers
– Associate syntactic entities with line ranges

• Filter out long transactions not corresponding to
meaningful atomic changes
– E.g., features and bug fixes vs. branch merging

• Used to mine co-changed entities
[Hassan& Holt 04, Ying et al. 04]

[Zimmermann et al. 04] http://www.st.cs.uni-sb.de/softevo/erose/

http://www.st.cs.uni-sb.de/softevo/erose/

T. Xie and A. E. Hassan: Mining Software Engineering Data 74

Getting Access to Source Control

• These tools are commonly used
– Email: ask for a local copy to avoid taxing the project's

servers during your analysis and development
– CVSup: mirrors a repository if supported by the

particular project
– rsync: a protocol used to mirror data repositories
– CVSsuck:

• Uses the CVS protocol itself to mirror a CVS repository
• The CVS protocol is not designed for mirroring; therefore,

CVSsuck is not efficient
• Use as a last resort to acquire a repository due to its inefficiency
• Used primarily for dead projects

T. Xie and A. E. Hassan: Mining Software Engineering Data 75

Recovering Information from CVS

Traditional Extractor

F0

St+1

F1 Ft+1Ft

Evolutionary Change Data

Compare Snapshot Facts

StS1S0 ..

..

T. Xie and A. E. Hassan: Mining Software Engineering Data 76

Challenges in recovering information
from CVS

main() {
int a;
/*call
help*/

helpInfo();
}

helpInfo() {
errorString!

}
main() {

int a;
/*call
help*/

helpInfo();
}

helpInfo(){
int b;
}
main() {

int a;
/*call
help*/

helpInfo();
}

V1:
Undefined func.
(Link Error)

V2:
Syntax error

V3:
Valid code

T. Xie and A. E. Hassan: Mining Software Engineering Data 77

CVS Limitations

• CVS has limited query functionality and is
slow

• CVS does not track co-changes
• CVS tracks only changes at the file level

T. Xie and A. E. Hassan: Mining Software Engineering Data 78

Inferring Transactions in CVS

• Sliding Window:
– Time window: [3-5mins on average]

• min 3mins
• as high as 21 mins for merges

• Commit Mails

[Zimmermann et al. 2004]

T. Xie and A. E. Hassan: Mining Software Engineering Data 79

Noise in CVS Transactions

• Drop all transactions above a large
threshold

• For Branch merges either look at CVS
comments or use heuristic algorithm
proposed by Fischer et al. 2003

T. Xie and A. E. Hassan: Mining Software Engineering Data 80

Noise in detecting developers

• Few developers are given commit privileges
• Actual developer is usually mentioned in the

change message
• One must study project commit policies before

reaching any conclusions

[German 2006]

Source Control and Bug Repositories

T. Xie and A. E. Hassan: Mining Software Engineering Data 82

Bugzilla

bill@firefox.org

Adapted from Anvik et al.’s slides

T. Xie and A. E. Hassan: Mining Software Engineering Data 83

Sample Bugzilla Bug Report
• Bug report image
• Overlay the triage questions

Duplicate?

Reproducible?
Bugzilla: open source bug tracking tool

http://www.bugzilla.org/
[Anvik et al. 06]

http://www.cs.ubc.ca/labs/spl/projects/bugTriage.html

Adapted from Anvik et al.’s slides

Assigned To: ?

http://www.bugzilla.org/
http://www.cs.ubc.ca/labs/spl/projects/bugTriage.html

T. Xie and A. E. Hassan: Mining Software Engineering Data 84

Acquiring Bugzilla data

• Download bug reports using the XML export
feature (in chunks of 100 reports)

• Download attachments (one request per
attachment)

• Download activities for each bug report (one
request per bug report)

T. Xie and A. E. Hassan: Mining Software Engineering Data 85

Using Bugzilla Data

• Depending on the analysis, you might need to
rollback the fields of each bug report using the
stored changes and activities

• Linking changes to bug reports is more or less
straightforward:
– Any number in a log message could refer to a bug

report
– Usually good to ignore numbers less than 1000. Some

issue tracking systems (such as JIRA) have identifiers
that are easy to recognize (e.g., JIRA-4223)

T. Xie and A. E. Hassan: Mining Software Engineering Data 86

So far: Focus on fixes

fixes issues mentioned in bug 45635: [hovering] rollover
hovers
- mouse exit detection is safer and should not allow for

loopholes any more, except for shell deactiviation
- hovers behave like normal ones:

- tooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

teicher 2003-10-29 16:11:01

Fixes give only the Fixes give only the locationlocation of a defect,of a defect,
not when it was introduced.not when it was introduced.

[Sliwerski et al. 05 –
Slides by Zimmermann]

T. Xie and A. E. Hassan: Mining Software Engineering Data 87

Bug-introducing changes

BugBug--introducing changes are changes that introducing changes are changes that
lead to problems as indicated by later fixes.lead to problems as indicated by later fixes.

...
if (foo!=null) {

foo.bar();
...

FIX

if (foo!=null) {
...
if (foo==null) {

foo.bar();
...

BUG-INTRODUCING

if (foo==null) { later fixed

T. Xie and A. E. Hassan: Mining Software Engineering Data 88

Life-cycle of a “bug”

fixes issues mentioned in bug 45635: [hovering] rollover hovers
- mouse exit detection is safer and should not allow for
loopholes any more, except for shell deactiviation

- hovers behave like normal ones:
- tooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

BUG REPORT

FIX
CHANGE

BUG-INTRODUCING
CHANGE

T. Xie and A. E. Hassan: Mining Software Engineering Data 89

$ cvs annotate -r 1.17 Foo.java

The SZZ algorithm

1.11.1
88

FIXED BUG
42233

$ cvs annotate -r 1.17 Foo.java
...

20: 1.11 (john 12-Feb-03): return i/0;
...

40: 1.14 (kate 23-May-03): return 42;
...

60: 1.16 (mary 10-Jun-03): int i=0;

T. Xie and A. E. Hassan: Mining Software Engineering Data 90

1.11.1
44

1.11.1
66

1.11.1
11

1.11.1
11

1.11.1
4 4

1.11.1
6 6

The SZZ algorithm

1.11.1
88

FIXED BUG
42233

BUG
INTRO

BUG
INTRO

BUG
INTRO

$ cvs annotate -r 1.17 Foo.java
...

20: 1.11 (john 12-Feb-03): return i/0;
...

40: 1.14 (kate 23-May-03): return 42;
...

60: 1.16 (mary 10-Jun-03): int i=0;

T. Xie and A. E. Hassan: Mining Software Engineering Data 91

fixes issues mentioned in bug 45635: [hovering] rollover
hovers
- mouse exit detection is safer and should not allow for
loopholes any more, except for shell deactiviation

- hovers behave like normal ones:
- tooltips pop up below the control
- they move with subjectArea
- once a popup is showing, they will show up instantly

BUG REPORT

closedsubmitted

1.11.1
44

1.11.1
66

The SZZ algorithm

1.11.1
44

1.11.1
66

1.11.1
88

FIXED BUG
42233

BUG
INTRO

BUG
INTRO

BUG
INTRO

1.11.1
11

1.11.1
44

1.11.1
66

BUG
INTRO

BUG
INTRO

REMOVE
FALSE POSITIVES

Project Communication – Mailing lists

T. Xie and A. E. Hassan: Mining Software Engineering Data 93

Acquiring Mailing lists

• Usually archived and available from the
project’s webpage

• Stored in mbox format:
– The mbox file format sequentially lists every

message of a mail folder

T. Xie and A. E. Hassan: Mining Software Engineering Data 94

Challenges using Mailing lists data I

• Unstructured nature of email makes
extracting information difficult
– Written English

• Multiple email addresses
– Must resolve emails to individuals

• Broken discussion threads
– Many email clients do not include “In-Reply-To”

field

T. Xie and A. E. Hassan: Mining Software Engineering Data 95

Challenges using Mailing lists data II

• Country information is not accurate
– Many sites are hosted in the US:

• Yahoo.com.ar is hosted in the US

• Tools to process mailbox files rarely scale to
handle such large amount of data (years of
mailing list information)
– Will need to write your own

Program Source Code

T. Xie and A. E. Hassan: Mining Software Engineering Data 97

Acquiring Source Code

• Ahead-of-time download directly from code
repositories (e.g., Sourceforge.net)
– Advantage: offline perform slow data processing and

mining
– Some tools (Prospector and Strathcona) focus on

framework API code such as Eclipse framework APIs
• On-demand search through code search engines:

– E.g., http://www.google.com/codesearch
– Advantage: not limited on a small number of downloaded

code repositories
Prospector: http://snobol.cs.berkeley.edu/prospector
Strathcona: http://lsmr.cs.ucalgary.ca/projects/heuristic/strathcona/

http://www.google.com/codesearch
http://snobol.cs.berkeley.edu/prospector
http://lsmr.cs.ucalgary.ca/projects/heuristic/strathcona/

T. Xie and A. E. Hassan: Mining Software Engineering Data 98

Processing Source Code

• Use one of various static analysis/compiler tools
(McGill Soot, BCEL, Berkeley CIL, GCC, etc.)

• But sometimes downloaded code may not be
compliable
– E.g., use Eclipse JDT http://www.eclipse.org/jdt/ for AST

traversal
– E.g., use exuberant ctags http://ctags.sourceforge.net/ for

high-level tagging of code
• May use simple heuristics/analysis to deal with

some language features [Xie&Pei 06, Mandelin et al. 05]
– Conditional, loops, inter-procedural, downcast, etc.

http://www.eclipse.org/jdt/
http://ctags.sourceforge.net/

Program Execution Traces

T. Xie and A. E. Hassan: Mining Software Engineering Data 100

Acquiring Execution Traces

• Code instrumentation or VM instrumentation
– Java: ASM, BCEL, SERP, Soot, Java Debug Interface
– C/C++/Binary: Valgrind, Fjalar, Dyninst

• See Mike Ernst’s ASE 05 tutorial on “Learning from
executions: Dynamic analysis for software
engineering and program understanding”

http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-
ase2005-abstract.html

More related tools: http://www.csc.ncsu.edu/faculty/xie/research.htm#related

http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://pag.csail.mit.edu/~mernst/pubs/dynamic-tutorial-ase2005-abstract.html
http://www.csc.ncsu.edu/faculty/xie/research.htm#related

T. Xie and A. E. Hassan: Mining Software Engineering Data 101

Processing Execution Traces

• Processing types: online (as data is
encountered) vs. offline (write data to file)

• May need to group relevant traces together
– e.g., based on receiver-object references
– e.g., based on corresponding method entry/exit

• Debugging traces: view large log/trace files
with V-file editor: http://www.fileviewer.com/

http://www.fileviewer.com/

Tools and Repositories

T. Xie and A. E. Hassan: Mining Software Engineering Data 103

Repositories Available Online

• Promise repository:
– http://promisedata.org/

• Eclipse bug data:
– http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/

• MSR Challenge 2007 (data for Mozilla & Eclipse):
– http://msr.uwaterloo.ca/msr2007/challenge/

• FLOSSmole:
– http://ossmole.sourceforge.net/

• Software-artifact infrastructure repository:
– http://sir.unl.edu/portal/index.html

http://promisedata.org/
http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/
http://msr.uwaterloo.ca/msr2007/challenge/
http://ossmole.sourceforge.net/
http://sir.unl.edu/portal/index.html

T. Xie and A. E. Hassan: Mining Software Engineering Data 104

Eclipse Bug Data

[Schröter et al. 06] http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/

• Defect counts are listed
as counts at the plug-in,
package and
compilationunit levels.

• The value field
contains the actual
number of pre- ("pre")
and post-release defects
("post").
• The average ("avg")
and maximum ("max")
values refer to the
defects found in the
compilation units
("compilationunits").

http://www.st.cs.uni-sb.de/softevo/bug-data/eclipse/

T. Xie and A. E. Hassan: Mining Software Engineering Data 105

Metrics in the Eclipse Bug Data

T. Xie and A. E. Hassan: Mining Software Engineering Data 106

Abstract Syntax Tree Nodes in
Eclipse Bug Data
• The AST node

information can be
used to calculate
various metrics

T. Xie and A. E. Hassan: Mining Software Engineering Data 107

FLOSSmole
• FLOSSmole

– provides raw data about open source projects
– provides summary reports about open source projects
– integrates donated data from other research teams
– provides tools so you can gather your own data

• Data sources
– Sourceforge
– Freshmeat
– Rubyforge
– ObjectWeb
– Free Software Foundation (FSF)
– SourceKibitzer

http://ossmole.sourceforge.net/

http://ossmole.sourceforge.net/

T. Xie and A. E. Hassan: Mining Software Engineering Data 108

Example Graphs from FlossMole

T. Xie and A. E. Hassan: Mining Software Engineering Data 109

Analysis Tools
• R

– http://www.r-project.org/
– R is a free software environment for statistical computing

and graphics
• Aisee

– http://www.aisee.com/
– Aisee is a graph layout software for very large graphs

• WEKA
– http://www.cs.waikato.ac.nz/ml/weka/
– WEKA contains a collection of machine learning

algorithms for data mining tasks
• More tools: http://ase.csc.ncsu.edu/dmse/resources.html

http://www.r-project.org/
http://www.aisee.com/
http://www.cs.waikato.ac.nz/ml/weka/
http://ase.csc.ncsu.edu/dmse/resources.html

T. Xie and A. E. Hassan: Mining Software Engineering Data 110

Data Extraction/Processing Tools

• Kenyon
– http://dforge.cse.ucsc.edu/projects/kenyon/

• Mylar (comes with API for Bugzilla and
JIRA)
– http://www.eclipse.org/mylar/

• Libresoft toolset
– Tools (cvsanaly/mlstats/detras) for recovering

data from cvs/svn and mailinglists
– http://forge.morfeo-project.org/projects/libresoft-

tools/

http://dforge.cse.ucsc.edu/projects/kenyon/
http://www.eclipse.org/mylar/
http://forge.morfeo-project.org/projects/libresoft-tools/
http://forge.morfeo-project.org/projects/libresoft-tools/

T. Xie and A. E. Hassan: Mining Software Engineering Data 111

Kenyon

Source
Control

Repository

Filesystem

Extract
Automated
configuration
extraction

Save
Persist gathered
metrics & facts

Kenyon
Repository
(RDBMS/
Hibernate)

Analyze
Query DB,
add new
facts

Analysis
Software

Compute
Fact extraction
(metrics, static
analysis)

[Adapted from Bevan et al. 05]

T. Xie and A. E. Hassan: Mining Software Engineering Data 112

Publishing Advice

• Report the statistical significance of your results:
– Get a statistics book (one for social scientist, not for

mathematicians)
• Discuss any limitations of your findings based on

the characteristics of the studied repositories:
– Make sure you manually examine the repositories. Do

not fully automate the process!
– Use random sampling to resolve issues about data noise

• Relevant conferences/workshops:
– main SE conferences, ICSM, MSR, WODA, …

T. Xie and A. E. Hassan: Mining Software Engineering Data 113

Mining Software Repositories

• Very active research area in SE:
– MSR is one of the most attended ICSE

workshops in last 4 years (MSR 2006: sold out)
– Special Issue of IEEE TSE on MSR:

• 15 % of all submissions of TSE in 2004
• Fastest review cycle in TSE history: 8 months

– Special Issue of Journal of Empirical Software
Engineering (late 2007/2008)

Q&A

Mining Software Engineering Data Bibliography
http://ase.csc.ncsu.edu/dmse/
•What software engineering tasks can be helped by data mining?
•What kinds of software engineering data can be mined?
•How are data mining techniques used in software engineering?
•Resources

http://ase.csc.ncsu.edu/dmse/
http://ase.csc.ncsu.edu/dmse/setasks.html
http://ase.csc.ncsu.edu/dmse/sedata.html
http://ase.csc.ncsu.edu/dmse/miningalgs.html
http://ase.csc.ncsu.edu/dmse/resources.html

T. Xie and A. E. Hassan: Mining Software Engineering Data 115

Example Tools

• MAPO: mining API usages from open source
repositories [Xie&Pei 06]

• DynaMine: mining error/usage patterns from
code revision histories [Livshits&Zimmermann 05]

• BugTriage: learning bug assignments from
historical bug reports [Anvik et al. 06]

T. Xie and A. E. Hassan: Mining Software Engineering Data 116

Demand-Driven Or Not

Any-gold
mining

Demand-driven
mining

Examples

Advantages

Issues

DynaMine, … MAPO, BugTriage, …

Surface up only cases
that are applicable

Exploit demands to filter
out irrelevant information

How much gold is
good enough given the
amount of data to be
mined?

How high percentage of
cases would work well?

T. Xie and A. E. Hassan: Mining Software Engineering Data 117

Code vs. Non-Code

Code/
Programming Langs

Non-Code/
Natural Langs

Examples

Advantages

Issues

MAPO, DynaMine, … BugTriage, CVS/Code
comments, emails, docs

Relatively stable and
consistent
representation

Common source of
capturing programmers’
intentions
What project/context-
specific heuristics to use?

T. Xie and A. E. Hassan: Mining Software Engineering Data 118

Static vs. Dynamic

Static Data: code
bases, change histories

Dynamic Data: prog
states, structural profiles

Examples

Advantages

Issues

MAPO, DynaMine, … Spec discovery, …

No need to set up exec
environment;
More scalable

More-precise info

How to reduce false
positives?

How to reduce false
negatives?
Where tests come from?

T. Xie and A. E. Hassan: Mining Software Engineering Data 119

Snapshot vs. Changes

Code snapshot Code change history

Examples

Advantages

Issues

MAPO, … DynaMine, …

Larger amount of
available data

Revision transactions
encode more-focused
entity relationships
How to group CVS
changes into transactions?

T. Xie and A. E. Hassan: Mining Software Engineering Data 120

Characteristics in Mining SE Data

• Improve quality of source data: data preprocessing
– MAPO: inlining, reduction
– DynaMine: call association
– BugTriage: labeling heuristics, inactive-developer removal

• Reduce uninteresting patterns: pattern postprocessing
– MAPO: compression, reduction
– DynaMine: dynamic validation

• Source data may not be sufficient
– DynaMine: revision histories
– BugTriage: historical bug reports

SE-Domain-Specific Heuristics are important

	Mining Software Engineering Data
	Tao Xie
	Ahmed E. Hassan
	Acknowledgments
	Tutorial Goals
	Mining SE Data
	Mining SE Data
	Overview of Mining SE Data
	Tutorial Outline
	Types of SE Data
	Historical Data
	Historical Data
	Percentage of Project Costs Devoted to Maintenance
	Survey of Software Maintenance Activities
	Source Control Repositories
	Source Control Repositories
	Change Propagation
	Measuring Change Propagation
	Guiding Change Propagation
	Code Sticky Notes
	Conceptual & Concrete Architecture�(NetBSD)
	Investigating Unexpected Dependencies Using Historical Code Changes
	Studying Conway’s Law
	Linux: Conceptual, Ownership, Concrete
	Source Control and Bug Repositories
	Predicting Bugs
	Using Imports in Eclipse to Predict Bugs
	Classifying Changes as Buggy or Clean
	Project Communication – Mailing lists
	Project Communication (Mailinglists)	
	Social Network Analysis
	Immigration Rate of Developers
	The Patch Review Process
	Measure a team’s morale around release time?
	Program Source Code
	Code Entities
	Mining API Usage Patterns
	Relationships btw Code Entities
	Program Execution Traces
	Method-Entry/Exit States
	Other Profiled Program States
	Executed Structural Entities
	Q&A and break
	Part I Review
	Data Mining Techniques in SE
	Data Mining Techniques in SE
	Frequent Itemsets
	Association Rules
	A Simple Case
	Conflicting Patterns
	Detect Copy-Paste Code
	Find Bugs in Copy-Pasted Segments
	Mining Rules in Traces
	Mining Emerging Patterns in Traces
	Data Mining Techniques in SE
	Classification: A 2-step Process
	Model Construction
	Model Application
	Supervised vs. Unsupervised Learning
	GUI-Application Stabilizer
	Data Mining Techniques in SE
	What is Clustering?
	Clustering and Categorization
	Software Categorization - MUDABlue
	Data Mining Techniques in SE
	Other Mining Techniques
	How to Do Research in �Mining SE Data
	How to do research in mining SE data
	Source Control Repositories
	Concurrent Versions System (CVS) Comments
	CVS Comments
	Code Version Histories
	Getting Access to Source Control
	Recovering Information from CVS
	Challenges in recovering information from CVS
	CVS Limitations
	Inferring Transactions in CVS
	Noise in CVS Transactions
	Noise in detecting developers
	Source Control and Bug Repositories
	Bugzilla
	Sample Bugzilla Bug Report
	Acquiring Bugzilla data
	Using Bugzilla Data
	So far: Focus on fixes
	Bug-introducing changes
	Life-cycle of a “bug”
	The SZZ algorithm
	The SZZ algorithm
	The SZZ algorithm
	Project Communication – Mailing lists
	Acquiring Mailing lists	
	Challenges using Mailing lists data I
	Challenges using Mailing lists data II
	Program Source Code
	Acquiring Source Code
	Processing Source Code
	Program Execution Traces
	Acquiring Execution Traces
	Processing Execution Traces
	Tools and Repositories
	Repositories Available Online
	Eclipse Bug Data
	Metrics in the Eclipse Bug Data
	Abstract Syntax Tree Nodes in Eclipse Bug Data
	FLOSSmole
	Example Graphs from FlossMole
	Analysis Tools
	Data Extraction/Processing Tools
	Kenyon
	Publishing Advice
	Mining Software Repositories
	Q&A
	Example Tools
	Demand-Driven Or Not
	Code vs. Non-Code
	Static vs. Dynamic
	Snapshot vs. Changes
	Characteristics in Mining SE Data

